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• The ES approach has the potential to
bring greater ecological relevance to
ERA.

• EU regulators, industry and academia all
supported an ES approach in ERA.

• ES approach is applicable to all chemical
regulations but challenging for widely
dispersive chemicals.

• ES approach integrates across environ-
mental policies, stressors, habitats and
scales.

• Tailor-made tools and models ES need-
ed to link ecotoxicity measures to ES
endpoints.
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The ecosystem services (ES) approach is gaining broad interest in regulatory and policy arenas for use in land-
scape management and ecological risk assessment. It has the potential to bring greater ecological relevance to
the setting of environmental protection goals and to the assessment of the ecological risk posed by chemicals.
A workshop, organised under the auspices of the Society of Environmental Toxicology and Chemistry Europe,
brought together scientific experts from European regulatory authorities, the chemical industry and academia
to discuss and evaluate the challenges associated with implementing an ES approach to chemical ecological
risk assessment (ERA).
Clear advantages of using an ES approach in prospective and retrospective ERA were identified, including: mak-
ing ERA spatially explicit and of relevance to management decisions (i.e. indicating what ES to protect and
where); improving transparency in communicating risks and trade-offs; integrating across multiple stressors,
scales, habitats and policies. A number of challenges were also identified including: the potential for increased
complexity in assessments; greater data requirements; limitations in linking endpoints derived from current
ecotoxicity tests to impacts on ES.
In principle, the approach was applicable to all chemical sectors, but the scale of the challenge of applying an ES
approach to general chemicals with widespread and dispersive uses leading to broad environmental exposure,
was highlighted. There was agreement that ES-based risk assessment should be based on the magnitude of im-
pact rather than on toxicity thresholds. The need for more bioassays/tests with functional endpoints was recog-
nized, as was the role of modelling and the need for ecological production functions to link measurement
Keywords:
Landscape-scale risk assessment
Ecotoxicity tests
Ecological indicators
dford, UK.

. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

antages and challenges associatedwith implementing an ecosystem services approach to ecological
ron (2017), https://doi.org/10.1016/j.scitotenv.2017.10.094

https://doi.org/10.1016/j.scitotenv.2017.10.094
mailto:l.maltby@sheffield.ac.uk
Journal logo
https://doi.org/10.1016/j.scitotenv.2017.10.094
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2017.10.094


2 L. Maltby et al. / Science of the Total Environment xxx (2017) xxx–xxx

Please cite this article as:Maltby, L., et al., Adv
risk assessment for chemicals, Sci Total Envi
endpoints to assessment endpoints. Finally, the value of developing environmental scenarios that can be com-
bined with spatial information on exposure, ES delivery and service provider vulnerability was recognized.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
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1. Introduction

Human wellbeing depends on nature and the benefits it provides
(Daily et al., 1997). The relationships between habitats, their biodiversi-
ty and human wellbeing are varied and complex (Sandifer et al., 2015)
and the ecosystem services concept has been proposed as a vehicle for
characterising and understanding these relationships (Millennium
Ecosystem Assessment, 2005). There is clear consensus that ecosystem
services (ES) are derived from biophysical structures and processes
(Haines-Young and Potschin, 2010), however, there is no single defini-
tion of ES (Nahlik et al., 2012). Here we adopt The Economics of Ecosys-
tem and their Biodiversity (TEEB) definition of ES: ‘direct and indirect
contributions of ecosystems to human well-being’ (TEEB, 2010). Be-
cause ecosystems differ in their species composition the services that
ecosystems can provide vary in time and space (Hassan et al., 2005;
Science for Environmental Policy, 2015). Moreover, many ecosystems
are actively managed for specific purposes (e.g. nature conservation,
timber production, food, flood prevention) and because of interactions
between species and ecological processes, the management or optimi-
zation of ecosystems for one servicemay have consequences for the de-
livery of other services (Raudsepp-Hearne et al., 2010).

Chemical products entering the environment have the potential to
enhance or reduce human wellbeing. If the goal of environmental man-
agement is to optimise human wellbeing, then ES may provide a com-
mon currency for comparing the wellbeing benefits of chemical use
with the potential wellbeing costs via environmental degradation
(Maltby, 2013). Ecological risk assessment (ERA) is concerned with
quantifying the adverse effects of chemicals on ES delivery, but risk
management needs to consider both the risks and benefits of chemical
products for human well-being. Effective assessment of chemical risks
requires clear protection goals specifyingwhat to protect, where to pro-
tect it and over what time period. A wide range of general protection
goals are either explicit or implicit in legislation, most of which are
vaguely defined, froma scientific perspective, and hence not easilymea-
surable (Hommen et al., 2010; Brown et al., 2017). An important prob-
lem formulation step in the ERA of chemicals is therefore the
operationalization of generic protection goals into specific protection
goals (SPGs) that can be used to guide prospective or retrospective
ERAs (Munns et al., 2009; Nienstedt et al., 2012; Thomsen et al., 2012).

Conventional ERA has focused predominantly on structural end-
points (e.g. population abundance, species richness etc.), but many ES
flow from ecological processes (de Groot et al., 2002). Species or taxo-
nomic groups currently used in ERA may not be important for the ES
of concern or, if important, themeasurement endpoints may not be rel-
evant to ES provision. ES are delivered by natural capital, including hab-
itats and the biodiversity they support, and understanding which
natural capital attributes are important for delivering specific ES is an
area of active research (Smith et al., 2017). Many chemicals are widely
distributed and may potentially impact a number of habitats, varying
from homogeneous monocultures (e.g. some arable or forested land-
scapes) to highly heterogeneous habitat mosaics. Retrospective ERAs
focus on those sites and habitats known or suspected to be exposed to
chemicals. However, prospective ERAs are generally not site-specific
and are less habitat specific (e.g. they may not differentiate between
lotic or lentic freshwater systems of different scales). This raises the
challenge of deciding which ES to prioritise in order to contextualize
the ERA. This prioritization is required to move risk management
away from the impossible task of ‘protecting everything, everywhere,
all of the time’ and towards a more nuanced and resource targeted
antages and challenges assoc
ron (2017), https://doi.org/10
assessment that effectively ensures the correct level of protection, in
the right locations (Nienstedt et al., 2012; Devos et al., 2015).

The European chemical industry is highly regulated, although legis-
lation varies across chemical sectors and involves different European
agencies (Brown et al. 2017). For instance, whereas general chemicals
under REACH (Regulation (EC)No 1907/2006) and biocides (Regulation
(EU) No 528/2012) are the remit of the European Chemicals Agency
(ECHA), the European Food Safety Authority (EFSA) has responsibility
for plant protection products (Regulation (EC) No 1107/2009) and
feed additives (Regulation (EC) No 1831/2003). EFSA has produced
guidance for developing specific protection goals for the ERA of plant
protection products and feed additives using the ES approach (EFSA
PPR Panel, 2010; EFSA Scientific Committee, 2016a). Key taxa or func-
tional groups delivering ES of concern have also been identified (EFSA
PPR Panel, 2013, 2014, 2015, 2017). A recent joint workshop between
ECHA and EFSA on soil risk assessment highlighted that “The [ES] ap-
proach is already incorporated in EFSA's guidance, but presents a some-
what new concept for ECHA” (ECHA, 2016).

Given the considerations above, implementing an ES approach raises
a number of questions:what are the advantages and limitations of using
the ES framework for ERA?How to incorporate spatio-temporal hetero-
geneity in landscapes and hence ES delivery?What is the general appli-
cability of the approach across chemical sectors? How canwe assess the
impacts of chemicals on ES and to what extent do standardised test
methods and approaches provide the information required? What are
the current knowledge gaps and how may they be addressed?

Herewe describe the outcome of an expert elicitation and consensus
building process in which scientific experts from European regulatory
authorities, chemical industry and academia discussed and evaluated
the challenges associated with implementing an ES approach to chem-
ical ERA. This was the first of a series of three workshops organised as
part of the CARES project (Chemicals: Assessment of Risks to Ecosystem
Services), which was funded by the European Chemical Industry Coun-
cil (Cefic) Long Range Initiative.

2. Methods

A 2-day workshop was organised under the auspices of the Society
of Environmental Toxicology and Chemistry (SETAC) Europe to bring
together scientific experts from European regulatory authorities, chem-
ical industry and academia to discuss and evaluate the advantages and
challenges associated with implementing an ES approach to chemical
ERA. The workshop was held in Brussels (15–16 July 2015) and was
attended by twenty-four invited participants (9 business, 8 regulatory,
6 academic, 1 NGO2). The aim of the workshop was to reach consensus
across stakeholders on: (1) the current state of knowledge and key in-
formation gaps; (2) possible ways forward and development needs.

Workshop participants addressed the following questions:

1. What are the advantages and challenges of using an ES framework in
prospective and retrospective ERA?

2. What approaches could we use to account for heterogeneity in land-
scapes and ES delivery when undertaking prospective ERA?
iatedwith implementing an ecosystem services approach to ecological
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3. To what extent is the ES approach universally applicable (i.e. across
different habitats, chemicals, emission/exposure scenarios, legisla-
tions etc.)?

4. Assuming ES-based protection goals, how can we assess the impacts
of chemicals on ES?

5. To what extent do standardised test methods and approaches pro-
vide the necessary information?

6. What developments are required to provide the tools and ap-
proaches needed to assess the impacts of chemicals on ES?

The questions were first addressed in small groups and then in ple-
narywith all participants. These discussions formed the basis of thefinal
plenary discussion aimed at identifying future needs and next steps.
Questions 1–3 were considered separately by each sector (i.e. business,
government, academia) and the outcome of those deliberations
discussed by all participants in plenary. Questions 4–6 were considered
by three mixed-sector groups, each focusing on different risk assess-
ment scenarios (i.e. prospective ERA for chemicals with non-specific
mode of action (baseline toxicity), prospective ERA for chemicals with
a specific mode of action, retrospective ERA), before being discussed in
plenary.

3. Results and discussion

3.1. What are the advantages and challenges of using an ES framework in
prospective and retrospective ERA?

There was considerable consensus across different stakeholders of
the main advantages and challenges of applying an ES framework to
ERA (Table 1). Participants from all sectors identified relevance, trans-
parency, integration and communication as themajor advantages. Com-
plexity, lack of available tools and anthropocentric focus of the approach
were identified as major challenges.

Workshop participants from all sectors agreed that an ES framework
can result in better informed risk management decisions and more rel-
evant ERA by focusing protection goals on what stakeholders value and
tailoring them to be spatially and/or temporally specific. A four-step
process for identifying and prioritizing ecosystems and services poten-
tially impacted by chemical emissions has been proposed to aid the der-
ivation of specific protection goals (Maltby et al., 2017). Focusing ERAs
in this way should also ensure greater acceptance of assessment out-
comes and enhance stakeholder and societal support for potentially
costly risk management (Faber, 2006; Cormier and Suter, 2008).
Table 1
Advantages and challenges of applying andES framework to prospective and retrospective
ERA identifiedbyworkshopparticipants frombusiness (B), government (G) and academia
(A).

Advantages Challenges

Relevance: focus RA on what people
want when defining protection goals
(B, G, A)

Anthropocentric (B, G, A)

Transparency: prioritization and
trade-offs made explicit (B, G, A)

Valuation – how to do it (B)

Integration: integration-across multiple
stressors, habitats, scales and policies
(B, G, A)

Complexity: data hungry,
spatio-temporal variation (B, G, A)

Communication: more effective
communication (B, G, A)

Unfamiliar language (G)

Informed RM decisions. Increases
ecological realism, considers
implications of different management
in multifunctional landscapes, enables
cost/benefit of remedial actions (B, G)

Cost – need time and money (B, A)

Combines ES with intelligent testing (B) Tools: converting conventional
ecotoxicity testing to ES/lack of ERA
tools (B, G, A)

RA = risk assessment; RM = risk management.

Please cite this article as:Maltby, L., et al., Advantages and challenges assoc
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Application of an ES approach increases transparency both in terms of
the prioritization of ES (what to protect where?) and in describing
trade-offs between ES (i.e. which services will be enhanced and which
will be reduced by different management decisions).

Ecosystems may have the capacity to deliver many ES, but ecosys-
tem functions can only be considered services when they are associated
with human beneficiaries (Fisher et al., 2009). Workshop participants
from all sectors noted that one of the challenges to implementing the
ES approach is that it is anthropocentric and utilitarian. For instance, it
has been argued that, in contrast to non-utilitarian approaches to biodi-
versity conservation, an ES approach ignores the intrinsic value of na-
ture and consequently biodiversity only matters to the extent that it
benefits humans (McCauley, 2006; Silvertown, 2015). However, as
Loreau discusses, the distinction between utilitarian and non-
utilitarian approaches to biodiversity conservation can be reconciled
(Loreau, 2014). The intrinsic value of nature is included under the cate-
gory of ‘cultural services’ and a recent report for the European Commis-
sion concluded that, although there are still uncertainties surrounding
the question of whether the use of an ES approach protects biodiversity,
the answer is “likely to be a qualified yes”. The qualifiers being that “the
approach is implemented via policies based on sound evidence, and in
conjunction with strategies that recognise the intrinsic value of biodi-
versity” (Science for Environmental Policy, 2015).

The ES approach requires benefits to be valued but beneficiariesmay
differ in their value systems and/or their valuations of particular ES
(Anderson et al., 2016; Pan et al., 2016). Workshop participants from
business identified valuation as a challenge to the implementation of
an ES approach. In particular, how are ES to be valued andwhose values
are to be taken into account? Will monetarization overvalue provision-
ing services that have a clear market (and are therefore easier to value)
and undervalue other ES that do not (e.g. cultural services)? Similar
concerns have been raised previously (de Groot et al., 2010; Hauck
et al., 2013) and are areas of active research and debate (Calow, 2015;
Kapustka and McCormick, 2015; Munns and Rea, 2015).

Most chemical prospective ERA is concerned with a single environ-
mental compartment (e.g. soil, water) exposed to a single chemical.
However ecosystems are impacted by multiple stressors – both natural
and anthropogenic – and ES are often delivered across large spatial
scales by multiple environmental components (UK National
Ecosystem Assessment, 2011; Burkhard et al., 2014). The ability of the
ES framework to integrate the ERA across multiple stressors, multiple
scales and multiple environmental compartments (habitats) and
hence multiple environmental policies, was considered to be a major
advantage by all sectors as it offered the potential of a more holistic en-
vironmental management. However, although this added complexity
increases ecological realism and can result in more intelligent and
targeted testing, it also requires greater ecological understanding.

Many ES are driven by ecological processes, but current ERA tools,
especially those used in prospective ERA, focus on ecological structure
(see sections 3.5 and 3.6). Participants from all sectors highlighted the
need to developnew tools that eithermeasure ES directly or produce in-
formation (i.e. measurement endpoints) that can be robustly extrapo-
lated to ES performance (i.e. assessment endpoint). The increased data
requirements and the need to develop and apply new ERA tools will
take time and potentially increase the cost of performing ERAs (a chal-
lenge highlighted by participants from business and academia). Howev-
er, as highlighted by participants from business and government,
adopting an ES approachwill increase ecological realism and by consid-
ering the implications of different management decisions in multifunc-
tional landscapes, as well as the costs and benefits of any remedial
actions, applying the approach should result in more robust risk man-
agement decisions (Munns et al., 2017). The presumption that an ES ap-
proach improves environmental decision-making because it makes
explicit the connection between human well being and ecosystem
structures and processes, has not, however, been rigorously evaluated
(Van Wensem et al., 2017).
iatedwith implementing an ecosystem services approach to ecological
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The ES approach highlights the direct and indirect benefits that peo-
ple get from nature and therefore facilitate discussion on why it is im-
portant to protect ecosystems and their biodiversity. Because
stakeholder values are used to specify protection goals, participants
from all sectors recognized the value of the approach for improving
communication between risk assessors and riskmanagers, and between
scientists, regulators and the general public. However, the current lack
of clarity on definitions, unfamiliarity of the language and overtly an-
thropocentric nature of the approach (i.e. nature serving people versus
nature benefiting people) can reduce the effectiveness of this communi-
cation (a challenge identified by participants from government). A sim-
ilar concern about the clarity of terminology and the potential for
misunderstanding or misinterpretation was identified by stakeholders
asked about the use of an ES approach in European water management
(Grizzetti et al., 2016). The use of the word ‘services’ is often perceived
as particularly problematic and some authors have suggested that the
language of services should be avoided altogether (Gunton et al., 2017).

3.2. What approaches could we use to account for heterogeneity in land-
scapes and ES delivery when undertaking prospective ERA?

Whereas retrospective ERAs may take account of environmental
heterogeneity, most prospective ERAs do not. Chemicals may be re-
leased into, or applied to, a single habitat (e.g. river, arable field, forest),
but then be transported, possibly over considerable distances, to other
habitats. Knowledge of the properties of chemicals and the environ-
ments into which they are released, can be used to assess the likelihood
of exposure for different habitat types and to target risk assessment on
those habitats where the potential for impacts is greatest. In addition to
spatio-temporal variation in chemical exposure, there is spatio-
temporal variation in ES delivery. This variation is driven by differences
in species distributions, habitats, land use and management practices
(Foley et al., 2005; Anderson et al., 2009).

Workshop participants agreed that the development of a landscape
scale, scenario-based approach to chemical ERA, which incorporates
some of this variation and thereby reduces the uncertainty associated
with the risk assessment, would improve the ecological relevance of
ERAs and enable risk managers to make better informed decisions. A
tiered approach was advocated for prospective risk assessment in
which lower tiers would use exposure and/or effect based triggers
Fig. 1. Schematic representation of the links between spatially and temporally explicit exposu
Environmental scenarios represent regional landscape typologies at various scales and provid
field monitoring undertaken to verify the outcomes of prospective ERAs.

Please cite this article as:Maltby, L., et al., Advantages and challenges assoc
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based on conservative assumptions, whereas higher tiers would adopt
standard environmental scenarios accounting for spatial and temporal
variation.

Moving to a landscape scale will require consideration of the spatio-
temporal variation in the distribution, abundance, impact and recovery
of the species and ecological processes delivering ES (i.e. ES providers
(Luck et al., 2009)) and could include the assessment of multiple
stressors. Challenges in developing landscape-scale scenarios include
mapping of chemical exposure and ES in space and time to identify pri-
ority areas based on the co-occurrence of chemical exposure and ES pro-
vision. The integration of exposure and ES information can be used to
define environmental scenarios that represent focal regional landscapes
delivering the ES of interest. These scenarios frame specific protection
goals and are used to identify focal species and ecological processes
for use in prospective ERA (Franco et al., 2017; Rico et al., 2017). Post-
decision monitoring is recommended to develop confidence in the ap-
proach and to allow adaptive management (Faber, 2006; Vijver et al.,
2017) (Fig. 1).

Other issues to be considered are what protection goals and hence
reference conditions (Wright et al., 2000; Rutgers, 2008) should envi-
ronmental scenarios represent. Most European landscapes are either
urbanised or managed and it is these human-modified landscapes that
should inform the reference conditions used in ERA. Non-urbanised
landscapes in Europe are managed for a variety of purposes including
crop and livestock production, timber, nature conservation, hunting
and fishing, energy production, transport, water abstraction, flood pro-
tection or recreation. The land uses are changing, for instance, between
1990 and 2006 urban areas in Europe increased by 21% and permanent
crops decreased by 13.4% (Kuemmerle et al., 2016). Changes in land use
and land management will alter the ES profile even in the absence of
other stressors. A commercial forest will provide a different set of ES
than a native woodland, a river channel modified to alleviate flooding
will provide a different set of ES than an unmodified and unconstrained
river channel and a ploughed fieldwill provide a different set of services
than an unmanaged meadow (Foley et al., 2005). Environmental sce-
narios developed for chemical ERA should represent relevant land
uses and landmanagement practices and not default to assessing chem-
ical effects against pristine, non-managed environments.

A key element of the problem formulation step is identifying which
ES are required by stakeholders, where (and when) they need to be
re assessment and potentially impacted ecosystem services via environmental scenarios.
e a frame for prospective ecological risk assessment. They inform, and may be refined by,

iatedwith implementing an ecosystem services approach to ecological
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supplied and at what level. This requires stakeholders to be identified
and consulted in order to ascertain their preferences and values whilst
recognising that the areas where ES are produced (i.e. service produc-
tion areas) and areas where the benefits occur (i.e. service benefit
areas) may not be the same (Fisher et al., 2009).Whereasmost regulat-
ing services, except for climate regulation, are produced and utilized
within a catchment or region, provisioning and cultural services may
be traded over large distances,making it difficult to identify andmanage
the potential environmental consequences of ES production and to
identify appropriate stakeholders (Costanza, 2008; Villamagna et al.,
2013).

The identification and valuation of humanwellbeing benefits arising
from ES should contextualize and be used to guide the ERA process by
specifying the specific protection goals for assessment and helping to
decide on focal species, processes and landscapes to be used for the en-
vironmental scenarios. The development of environmental scenarios for
prospective ERA is an emerging field of research and studies have fo-
cused primarily on the ERA of pesticides (Ibrahim et al., 2014; Rico
et al., 2017) or down-the-drain chemicals (Franco et al., 2017). These
approaches start from a consideration of the composition of species or
species traits in the reference scenario, rather than from a consideration
of the ES preferences of stakeholders. However, they could be devel-
oped further to incorporate stakeholder preferences, as is currently
done for some retrospective risk assessment schemes (NEN, 2010;
Moore et al., 2017).

3.3. To what extent is the ES approach universally applicable (i.e. across dif-
ferent habitats, chemicals, emission/exposure scenarios, legislations etc.)?

Workshop participants agreed that, in principle, ES approaches are
widely applicable across different habitats, chemicals, exposure scenar-
ios and legislations. However, risk management decisions may vary
across different legislations, chemicals and regions and insufficient un-
derstanding of which, and how, ES are provided by specific habitats
may limit some applications. Participants considered the applicability
of the approach to be a function of both the spatial and temporal scale
of exposure: the approach being most readily applied to chemicals
that had a clearly defined short-term, localised exposure (e.g. agro-
chemicals), followed by non-persistent chemicals from defined sources
(e.g. down the drain chemicals), followed by persistent, localised
chemicals (e.g. metals). They considered application of the approach
to be most challenging for persistent chemicals that undergo long-
range transport (e.g. POPs) where the potential spatial and temporal
scales and range of exposed ecosystems are huge and, consequently,
so would be the scope of the ERA.

Regulatory risk assessment in Europe is based on a threshold princi-
plewith authorisation dependingonwhether a specific toxicity to expo-
sure ratio has been exceeded. However, applying an ES approach that
presents risk management options incorporating trade-offs, requires a
more nuanced assessment that is based on an evaluation of the magni-
tude of impact in ES delivery. Workshop participants acknowledged
that thresholds may be required for regulatory decision making, but
also acknowledged that these thresholds need not be equivalent to a
no effect level. This is because a sustainable and acceptable level of ES
delivery (i.e. meets beneficiaries' needs) may be achieved even if
some reversible impact occurs (Luck et al., 2009).

Determining the magnitude and scale (spatial and temporal) of tol-
erable effects on ES providers requires knowledge of the translation
function (i.e. ecological production function, EPF) linking changes in
ES provider characteristics and performance to changes in the level of
ecosystem service delivery (Bruins et al., 2017). Generation of robust
EPFs has been identified as one of the major challenges for the imple-
mentation of an ES-based approach to risk assessment and riskmanage-
ment (Olander and Maltby, 2014). Workshop participants highlighted
the specific need to develop tools and models that relate conventional
ERA measurement endpoints (i.e. toxicity test endpoints, indicator
Please cite this article as:Maltby, L., et al., Advantages and challenges assoc
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endpoints) to ES (i.e. assessment endpoints) and the potential need
for additional measurement endpoints. Moreover, in order to be able
to assess fully the potential impact of chemical stressors on bundles of
ES and their interactions (i.e. synergies and trade-offs), workshop par-
ticipants recommended that quantitative relationships, linking chemi-
cal exposure to changes in key service provider characteristics and ES
delivery, are generated. If these relationships are not known, then a pre-
cautionary approach may be adopted in which either no or only tran-
sient adverse effects on ES provider characteristics are acceptable. As a
result of these discussions, workshop participants identified the need
for the development of assessment criteria based on magnitude of im-
pacts rather than binary pass/fail as in current general chemicals regula-
tion. This will require a systems approach to evaluate the ecological
consequences of predicted chemical impacts in time and space, as well
as the potential recovery from such impacts (EFSA Scientific
Committee, 2016b).

3.4. Assuming ES-based protection goals, how can we assess the impacts of
chemicals on ES?

EFSA have led in the development of specific protection goals for
market authorization framed within an ES perspective (EFSA PPR
Panel, 2010; Nienstedt et al., 2012; EFSA Scientific Committee, 2016a).
EFSA have identified generic ES providers (i.e. service providing units,
SPU)within which vulnerable species can be identified. Specific protec-
tion goals for each SPU include the ecological entity and attribute to be
protected, the spatial and temporal scale of protection, and the magni-
tude of acceptable effect (EFSA Scientific Committee, 2016a). For exam-
ple, for aquatic organisms exposed to plant protection products, the
basis for a regulatory decision is either no effect on the measurement
endpoint (ecological threshold option) or some effect but full recovery
after a specified period of time (ecological recovery option) (EFSA PPR
Panel, 2013). The tiered approach adopted by EFSA requires calibration
of lower tiers to a reference tier that captures the environmental, eco-
logical, and where appropriate, landscape variability of the ecosystems
of interest. However, in the absence of robust and quantitative EPFs
linking measurement endpoints to the assessment endpoints (i.e.
changes in test species attributes to changes in ecosystem service deliv-
ery), the extent to which these assessments are over- or under-
protective is unknown.

Plant protection products are applied to a known crop, at a pre-
scribed concentration and frequency of application within a prescribed
time window. However, even under such well-defined conditions the
identification of ES of concern and vulnerable species within SPUs, can
be challenging (EFSA PPR Panel, 2013, 2014, 2015, 2017). Workshop
participants noted that the challenge is even greater for chemicals
with a wider and more spatially and temporally variable exposure pro-
file (also see section 3.3). Multiple species in multiple habitats deliver-
ing multiple ES are potentially exposed to chemicals with widespread
and dispersive uses. Some prioritization is therefore required to make
the assessment manageable. Ideally, this prioritization would be based
on stakeholder priorities coupled with an assessment of the importance
of different habitats for providing ES and their vulnerability to chemical
exposure. A refined EFSA framework, incorporating a prioritization step
based on chemical exposure characteristics and the importance of spe-
cific habitats for providing ES, has been applied to four case studies: oil
refinery waste discharging into estuarine waters; oil dispersant expo-
sure in aquatic environments; exposure of terrestrial and aquatic habi-
tats to down the drain chemicals; exposure of remote pristine habitats
to persistent organic pollutants (ECETOC, 2015; Maltby et al., 2017).
By identifying key habitats and ES of concern, this revised framework
offers the potential to incorporate greater spatial and temporal resolu-
tion and increased ecological relevance into prospective chemical ERA
(Maltby et al., 2017).

For retrospective ERA, indicators for impacts of chemical exposure
on species and ecological processes that drive ES could be used to derive
iatedwith implementing an ecosystem services approach to ecological
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environmental protection goals, set environmental quality objectives/
standards (EQO/EQS) or be used as assessment endpoints in site-
specific risk assessments (Faber and van Wensem, 2012; Moore et al.,
2017). The EU Water Framework Directive (WFD) dictates that
Europeanwaters should reach ‘good ecological status’, which is assessed
by monitoring invertebrate, fish, algal and macrophyte community
structures and establishingwhether they deviate from the expected ref-
erence condition (i.e. if the site wasminimally impacted). TheWFD also
states that priority chemicals should not exceed EQS derived using tox-
icity information. Workshop participants thought that there could be
practical advantages in setting EQS based on ES and that the CICES ty-
pology (Haines-Young and Potschin, 2013) could be used to select spe-
cies and endpoints for deriving EQS. This would enable the assessment
of ecological status in terms of the provision of acceptable levels of ES
delivery, whichmay not be the same as the currently defined ‘good eco-
logical status’ (Paetzold et al., 2010). However, workshop participants
also acknowledged that this application of the CICES typology may re-
quire the development of tests and bioassayswith functional endpoints.
Paetzold et al. provide a rationale for assessing ecological quality based
on ES and Vidal-Abarca et al. evaluate the ability of WFD indices to pro-
vide an assessment of ES (Paetzold et al., 2010; Vidal-Abarca et al.,
2016).

European soil quality is regulated by national legislation and guid-
ance for assessing soil quality within an ES framework has been devel-
oped in the Netherlands (NEN5737 (NEN, 2010)). NEN5737 provides
a step-wise protocol for stakeholder participative assessment in which
the specific land use objectives of local stakeholders (i.e. associated de-
sired ES) set the conditions for selection of ecotoxicological endpoints.
Vulnerable indicators, for use in bioassays or to be assessed through
field inventory and monitoring, are selected using a triad approach:
1) chemical characterisation of soil contaminants, 2) ecotoxicological
assessment of soil and 3) assessment of resident communities. Notably,
indicators should be selected that are relevant for the intended land use
and management practises (e.g. cropping and soil management). Re-
cently, the approach has been used to form the basis of a more general
international standard (ISO 19204:2017).

3.5. To what extent do standardised test methods and approaches provide
the necessary information?

In ecotoxicology and related sciences, the most relevant
standardised test methods are published by two international organisa-
tions: the OECD (Organisation for Economic Co-operation and Develop-
ment) and the ISO (International Organisation for Standardization). In
addition, some national organisations, most notably the ASTM
(American Society for Testing and Materials), have developed their
own standard methods. Most of these guidelines focus on test methods
that are appropriate for prospective ERA, but some are also relevant for
retrospective ERA. A review of the websites of OECD, ISO and ASTM
identified 171 guidelines for ecotoxicological methods, 53% of which
were published by ISO (See SI for details). The aquatic and terrestrial
guidelines reviewed were applicable to a variety of species from mi-
crobes tomammals, andmeasured the effects of chemicals on attributes
across the biological hierarchy from genes to ecosystem processes and
from individuals to communities (Fig. 2). Most guidelines were for
methods using invertebrates (35%), followed by microbes (28%), verte-
brates (17%) and primary producers (15%). Within these major taxo-
nomic groupings, the greatest number of guidelines were available for
crustaceans, fish and plants (Fig. 2a). The majority of guidelines were
for studies conducted in water (n = 84), followed by soil (n = 45)
and aquatic sediment (n = 20). The remaining guidelines covered
sludge, food and dung. In terms of ecological entity, 56% of methods
are performed at the level of the individual and most of these studies
measure effects on survival, development and growth (Fig. 2b,c). Six-
teen percent of studies assess the effects of chemicals on ecological pro-
cesses and the vast majority of these are with microbes.
Please cite this article as:Maltby, L., et al., Advantages and challenges assoc
risk assessment for chemicals, Sci Total Environ (2017), https://doi.org/10
An illustrativemapping of the relevance of standard ecotoxicological
test guidelines against ES is provided in Table 2. The mapping uses the
CICES typology of ES (Haines-Young and Potschin, 2013) and is restrict-
ed to two ES sections ‘Provisioning’ and ‘Regulation & Maintenance’.
Cultural services were not considered as they either potentially apply
to all species (i.e. Division ‘Physical and intellectual interactions with
biota, ecosystems and land-/seascapes’) or are highly context depen-
dent (i.e. Division ‘Spiritual, symbolic and other interactions with
biota, ecosystems and land−/seascapes). Standard test guidelines are
grouped taxonomically (Fig. 2a) and for each taxon × ES combination,
as assessment is made as to whether there are any directly relevant
methodologies (i.e. directly relevant species and (potentially) relevant
measurement endpoints) or any potential surrogate methodologies
(i.e. relevant taxonomic groups).

Although no standard methods assess the effects of chemicals on ES
directly, several are directly relevant for assessing the potential impacts
of chemicals on ES. With respect to provisioning services, for instance,
there are standard guidelines for game birds (e.g. OECD 205/206), com-
mercial and wild fish species (e.g. OECD 210/212), honey bees (e.g.
OECD 213/214), shellfish (e.g. ASTM E724-98), crop and other plant
species used for food, fibre, fodder and bioenergy (e.g. OECD 227/208,
ASTME1218-04). For regulating andmaintenance services, there are di-
rectly relevant standard guidelines for mediation of waste and toxics
(e.g. ASTM E1688-10; ISO 11733:2004)), soil formation and composi-
tion (e.g. OECD 216), pest control (e.g. OECD 226), erosion control and
flood protection (e.g. ASTM E1841-04).

Many ES are driven by ecological processes involving a range of tax-
onomic groups. However, almost all the standard test methods
reviewed that used ecosystem processes as a measurement endpoint,
were microbial studies. There is therefore a disconnect between the
structural endpoints used in many guidelines (e.g. survival, growth, re-
production, biomass (Fig. 1b)) and the ecological processes driving ES of
interest. Whereas protecting on the basis of structural endpoints may
protect ES delivery (i.e. if structural endpoints are more sensitive than
functional endpoints), this may not always be the case (Spaak et al.,
2017). Workshop participants therefore identified the need for: (i) an
analysis of how structural endpoints map onto different functions; (ii)
an evaluation of the advantages and limitations of the use of field and
mesocosm studies to provide both structural and functional effects
data of relevance to ES assessments (e.g. ASTM E1197-12, OECDGD53).
3.6. What developments are required to provide the tools and approaches
needed to assess the impacts of chemicals on ES?

Workshop participants recognized the need for intelligent testing
strategies informed by environmental scenarios that capture spatial
and temporal heterogeneity in chemical exposures and ecological re-
ceptors. Environmental scenarios should be informed by the co-
mapping of exposure patterns, environmental variables, species traits
and ES delivery across landscapes so that high-risk areas can be identi-
fied. These environmental scenarios should then be used to guide the
selection of test species and endpoints and to frame themodels (includ-
ing EPFs) developed to linkmeasurement endpoints to assessment end-
points (Fig. 1). Trait-based approaches have a number of advantages
over approaches based on species identity, including increased mecha-
nistic understanding and increased generalization of knowledge, tools
and models across communities, ecosystem and geographic regions
(Van den Brink et al., 2011). The trait-based approach has been success-
fully applied to plant assemblages and the potential use of traits to scale
from individual-level responses to ecological processes has been dem-
onstrated (Cornwell et al., 2008; Kunstler et al., 2016). Trait-based ap-
proaches for other taxonomic groups are less well advanced, partly
because of the limited availability of trait data, although this situation
is improving (Moretti et al., 2017). An alternative approach to the devel-
opment of environmental scenarios is to construct landscape-scale
iatedwith implementing an ecosystem services approach to ecological
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simulation models based on realistic landscape information (Topping
et al., 2015).

Workshop participants acknowledged that moving to a more ho-
listic ES-based landscape–scale ERA poses a number of scientific and
technical challenges. These include discriminating between the in-
fluences of chemicals and other stressors in retrospective ERA and
understanding and predicting how chemical impacts on the struc-
ture and functioning of ecological systems translate into changes in
ES service delivery at different spatial and temporal scales. In the
light of these challenges, workshop participants identified the fol-
lowing areas for future work:

• Development of approaches that could be used to account for hetero-
geneity in landscapes and ES delivery when undertaking risk assess-
ment. In particular, there is a need to explore the potential use of
mapping, environmental scenarios and trait-based approaches in
assessing risks to ecosystems and ES.
Table 2
Mapping of standard ecotoxicity test guidelines against ES. Taxon× ES combinationswhere ther
shaded black. Taxon × ES combinations where there are guidelines for relevant taxonomic gro
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• Development of tools/testmethods tomeasure ES-relevant (function-
al) endpoints and EPFs that linkmeasurement endpoints to changes in
ES delivery (assessment endpoints).

• Development of a tiered risk assessment approach incorporating in-
telligent and prioritized testing strategies, which include standard en-
vironmental scenarios or landscape models accounting for temporal
and spatial heterogeneity at higher tiers.

• Development of tools and approaches for assessing ES trade-offs.
• Illustrative case studies that evaluate the practicality and added value,
in terms of decision making, of implementing an ES-based approach
to ERA.

4. Conclusions

Stakeholders from across European regulatory authorities, industry
and academia agreed that there were clear advantages of using an ES
e are guidelines for relevant species and (potentially) relevantmeasurement endpoints are
ups are shaded grey.
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approach in chemical ERA. There was agreement that a tiered approach
wasnecessary and that ES-based ERA should be based on themagnitude
of impact rather than on toxicity exposure thresholds. In principle, the
ES approach has wide applicability, however the scale of the challenge
of applying an ES approach to general chemicals with widespread and
dispersive uses was highlighted.

A number of challenges need to be addressed before an ES approach
can be implemented in chemical ERA. In particular, limitations in linking
current ecotoxicity tests and indicators to ES endpoints require the de-
velopment of methods to measure effects on ecological processes and
the development of modelling approaches, including EPFs, to link mea-
surement endpoints to assessment endpoints. Workshop participants
recognized the value of developing a standard set of environmental sce-
narios (species or trait-based) that can be combined with spatial infor-
mation on exposure, ES delivery and ES provider vulnerability, to frame
the chemical ERA.
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