15 research outputs found

    Crystallized and fluid intelligence are predicted by microstructure of specific white-matter tracts

    Get PDF
    Studies of the neural basis of intelligence have focused on comparing brain imaging variables with global scales instead of the cognitive domains integrating these scales or quotients. Here, the relation between mean tract‐based fractional anisotropy (mTBFA) and intelligence indices was explored. Deterministic tractography was performed using a regions of interest approach for 10 white‐matter fascicles along which the mTBFA was calculated. The study sample included 83 healthy individuals from the second wave of the Cuban Human Brain Mapping Project, whose WAIS‐III intelligence quotients and indices were obtained. Inspired by the “Watershed model” of intelligence, we employed a regularized hierarchical Multiple Indicator, Multiple Causes model (MIMIC), to assess the association of mTBFA with intelligence scores, as mediated by latent variables summarizing the indices. Regularized MIMIC, used due to the limited sample size, selected relevant mTBFA by means of an elastic net penalty and achieved good fits to the data. Two latent variables were necessary to describe the indices: Fluid intelligence (Perceptual Organization and Processing Speed indices) and Crystallized Intelligence (Verbal Comprehension and Working Memory indices). Regularized MIMIC revealed effects of the forceps minor tract on crystallized intelligence and of the superior longitudinal fasciculus on fluid intelligence. The model also detected the significant effect of age on both latent variables

    Harmonized-Multinational qEEG Norms (HarMNqEEG)

    Get PDF
    This paper extends the frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. ii) We also show that the multinational harmonized Riemannian norms produce z-scores with increased diagnostic accuracy to predict brain dysfunction at school-age produced by malnutrition only in the first year of life. iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings

    Desarrollo de una aplicación informática para aprender clínica y producción equina jugando al Trivial

    Get PDF
    Introducción/objetivos: esta iniciativa surge de la puesta en común de experiencias docentes en las I Jornadas de Innovación Docente en Medicina y Cirugía Animal (Córdoba, 2011). Allí se presentaron algunas actividades que utilizan el éxito de metodologías basadas en concursos y competiciones, que consiguen que los alumnos las adopten fácilmente como métodos de aprendizaje.La actividad propuesta se basa en el popular juego TRIVIAL™ en el que equipos de alumnos contestan cuestiones de una batería de preguntas sobre veterinaria equina. Las preguntas están agrupadas por sistemas/especialidades.Se persigue crear un sistema de aprendizaje y autoevaluación formativa, que permita la evaluación de conocimientos adaptados al nivel de los alumnos de S~ del Grado en Veterinaria. Además de autoevaluar sus propios conocimientos sin la presión de un examen formal, el alumno practica la dinámica de grupo. La competitividad generada entre equipos estimula el trabajo individual y de grupo (...

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Semi-analytic Local Linearization Integration of high dimensional Neural Mass Models with distributed delays

    Full text link
    Neuroscience has shown great progress in recent years. Several of the theoretical bases have arisen from the examination of dynamic systems, using Neural Mass Models (NMMs). Due to the largescale brain dynamics of NMMs and the difficulty of studying nonlinear systems, the local linearization approach to discretize the state equation was used via an algebraic formulation, as it intervenes favorably in the speed and efficiency of numerical integration. To study the spacetime organization of the brain and generate more complex dynamics, three structural levels (cortical unit, population and system) were defined and assumed, in which the new assumed representation for conduction delays and new ways of connecting were defined. This is a new time-delay NMM, which can simulate several types of EEG activities since kinetics information was considered at three levels of complexity. Results obtained in this analysis provide additional theoretical foundations and indicate specific characteristics for understanding neurodynamic.Comment: 12 pages, 6 figures, 2 table

    Flanker Task-Elicited Event-Related Potential Sources Reflect Human Recombinant Erythropoietin Differential Effects on Parkinson’s Patients

    No full text
    We used EEG source analysis to identify which cortical areas were involved in the automatic and controlled processes of inhibitory control on a flanker task and compared the potential efficacy of recombinant-human erythropoietin (rHuEPO) on the performance of Parkinson’s Disease patients. The samples were 18 medicated PD patients (nine of them received rHuEPO in addition to their usual anti-PD medication through random allocation and the other nine patients were on their regular anti-PD medication only) and 9 age and education-matched healthy controls (HCs) who completed the flanker task with simultaneous EEG recordings. N1 and N2 event-related potential (ERP) components were identified and a low resolution tomography (LORETA) inverse solution was employed to localize the neural generators. Reaction times and errors were increased for the incongruent flankers for PD patients compared to controls. EEG source analysis identified an effect of rHuEPO on the lingual gyri for the early N1 component. N2-related sources in middle cingulate and precuneus were associated with the inhibition of automatic responses evoked by incongruent stimuli differentiated PD and HCs. From our results rHuEPO seems to mediate an effect on N1 sources in lingual gyri but not on behavioural performance. N2-related sources in middle cingulate and precuneus were evoked by incongruent stimuli differentiated PD and HCs

    Embracing diversity and inclusivity in an academic setting: Insights from the Organization for Human Brain Mapping

    Get PDF
    Scientific research aims to bring forward innovative ideas and constantly challenges existing knowledge structures and stereotypes. However, women, ethnic and cultural minorities, as well as individuals with disabilities, are systematically discriminated against or even excluded from promotions, publications, and general visibility. A more diverse workforce is more productive, and thus discrimination has a negative impact on science and the wider society, as well as on the education, careers, and well-being of individuals who are discriminated against. Moreover, the lack of diversity at scientific gatherings can lead to micro-aggressions or harassment, making such meetings unpleasant, or even unsafe environments for early career and underrepresented scientists. At the Organization for Human Brain Mapping (OHBM), we recognized the need for promoting underrepresented scientists and creating diverse role models in the field of neuroimaging. To foster this, the OHBM has created a Diversity and Inclusivity Committee (DIC). In this article, we review the composition and activities of the DIC that have promoted diversity within OHBM, in order to inspire other organizations to implement similar initiatives. Activities of the committee over the past four years have included (a) creating a code of conduct, (b) providing diversity and inclusivity education for OHBM members, (c) organizing interviews and symposia on diversity issues, and (d) organizing family-friendly activities and providing childcare grants during the OHBM annual meetings. We strongly believe that these activities have brought positive change within the wider OHBM community, improving inclusivity and fostering diversity while promoting rigorous, ground-breaking science. These positive changes could not have been so rapidly implemented without the enthusiastic support from the leadership, including OHBM Council and Program Committee, and the OHBM Special Interest Groups (SIGs), namely the Open Science, Student and Postdoc, and Brain-Art SIGs. Nevertheless, there remains ample room for improvement, in all areas, and even more so in the area of targeted attempts to increase inclusivity for women, individuals with disabilities, members of the LGBTQ+ community, racial/ethnic minorities, and individuals of lower socioeconomic status or from low and middle-income countries. Here, we present an overview of the DIC's composition, its activities, future directions and challenges. Our goal is to share our experiences with a wider audience to provide information to other organizations and institutions wishing to implement similar comprehensive diversity initiatives. We propose that scientific organizations can push the boundaries of scientific progress only by moving beyond existing power structures and by integrating principles of equity and inclusivity in their core values
    corecore