372 research outputs found
Orientation of Demagnetized Bees
The orientation of honey bee dances is affected by the earth's magnetic field. Honey bees possess localized, well-oriented, stable and superparamagnetic domains of magnetite. Four lines of evidence suggest that the superparamagnetic domains of bees are more likely to be involved in magnetic field detectors than the stable domains. (1) Although the stable domains vary widely in size and number between bees, approximately 2Γ10^8 superparamagnetic domains are found reliably in all bees, and are restricted to there latively narrow size range of 300β350 Γ
. This suggests that the superparamagnetic domains are more likely to have a biological function. (2) Behavioural observations of dances in null fields are difficult to reconcile with astable-domain detector but are clearly predicted by many superparamagnetic detector models. (3) When honey bees are demagnetized, their ability to orient to the earth's field is unaffected. This suggests that the detector either utilizes the super paramagnetic domains or depends on aligned anisotropic stable domains processed without regard to magneticpolarity. (4) Bees that have only superparamagnetic domains are able nevertheless to orient to the earth's magnetic field, a phenomenon which indicates that permanent domains may not be required for detection
Low oxygen tension primes aortic endothelial cells to the reparative effect of tissue-protective cytokines
Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the Ξ² common receptor (Ξ²CR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared to 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast Ξ²CR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis
Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor
Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in non-hematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP)). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects
ARA 290, a peptide derived from the tertiary structure of erythropoietin, produces long-term relief of neuropathic pain coupled with suppression of the spinal microglia response
BACKGROUND:
Neuropathic pain is a difficult to treat disorder arising from central or peripheral nervous system lesions. The etiology of neuropathic pain consists of several overlapping pathways converging into an exaggerated pain state with symptoms such as allodynia and hyperalgesia. One of these pathways involves activation of spinal cord microglia and astrocytes, which drive and maintain the inflammatory response following the lesion. These cells are a potential target for drugs for neuropathic pain relief. In this current study, we investigated the dose-effect relationship of the tissue protective peptide ARA 290, derived from the tertiary structure of erythropoietin, on allodynia and concurrent spinal cord microglia and astrocytes.
RESULTS:
Following a spared nerve injury in rats, vehicle or ARA290 (administered in either one of 4 doses: 3, 10, 30 and 60 ΞΌg/kg) was administered on days 1, 3, 6, 8 and 10. ARA290 exerted a dose-response effect by significantly reducing mechanical allodynia up to 20 weeks when compared to vehicle. The reduction of cold allodynia was significant up to 20 weeks for the doses 3, 10, 30 and 60 ΞΌg/kg when compared to vehicle. The effect 10 and 30 ΞΌg/kg ARA290 and vehicle on the microglia response (iba-1-immunoreactivity, iba-1-IR) and astrocyte reaction (GFAP-immunoreactivity, GFAP-IR) was investigated in animals surviving 2 (group 1) or 20 (group 2) weeks following lesion or sham surgery. In group 1, significant microglia reactivity was observed in the L5 segment of the spinal cord of animals treated with vehicle when compared to sham operated, while animals treated with 10 or 30 ΞΌg/kg did not show a increase. In group 2, a more widespread and increased microglia reactivity was observed for animals treated with 0 and 10 ΞΌg/kg when compared to sham operated animals, indicated by involvement of more spinal cord segments and higher iba-1-IR. Animals treated with 30 ΞΌg/kg did not show increased microglia reactivity. No difference in astrocyte reaction was observed.
CONCLUSIONS:
The erythropoietin-analogue ARA290 dose-dependently reduced allodynia coupled to suppression of the spinal microglia response, suggestive of a mechanistic link between ARA290-induced suppression of central inflammation and relief of neuropathic pain symptoms.Perioperative Medicine: Efficacy, Safety and OutcomeAnesthesiolog
ERYTHROPOIETIN FOR THE TREATMENT OF SUBARACHNOID HEMORRAGE: A FEASIBLE INGREDIENT FOR A SUCCESS MEDICAL RECIPE
Subaracnhoid hemorrage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Althoug an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbility and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered fo the treatment of cerebral vasospasm. In recent years, the mechanism contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been intensively investigated. A number of pathological processes have been identified in the pathogenesis of vasospasm including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. to date, the current therapeutic interventions remain ineffective being limited to the manipulation os systemic blood pressure, variation of blood volume and viscosity, and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO), has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is systematically administered. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the recurrent review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrage
Haemoglobin mass and running time trial performance after recombinant human erythropoietin administration in trained men
<p>Recombinant human erythropoietin (rHuEpo) increases haemoglobin mass (Hbmass) and maximal oxygen uptake (vΛ O2 max).</p>
<p>Purpose: This study defined the time course of changes in Hbmass, vΛ O2 max as well as running time trial performance
following 4 weeks of rHuEpo administration to determine whether the laboratory observations would translate into actual
improvements in running performance in the field.</p>
<p>Methods: 19 trained men received rHuEpo injections of 50 IUNkg21 body mass every two days for 4 weeks. Hbmass was
determined weekly using the optimized carbon monoxide rebreathing method until 4 weeks after administration. vΛ O2 max
and 3,000 m time trial performance were measured pre, post administration and at the end of the study.</p>
<p>Results: Relative to baseline, running performance significantly improved by ,6% after administration (10:3061:07 min:sec
vs. 11:0861:15 min:sec, p,0.001) and remained significantly enhanced by ,3% 4 weeks after administration
(10:4661:13 min:sec, p,0.001), while vΛ O2 max was also significantly increased post administration
(60.765.8 mLNmin21Nkg21 vs. 56.066.2 mLNmin21Nkg21, p,0.001) and remained significantly increased 4 weeks after
rHuEpo (58.065.6 mLNmin21Nkg21, p = 0.021). Hbmass was significantly increased at the end of administration compared to
baseline (15.261.5 gNkg21 vs. 12.761.2 gNkg21, p,0.001). The rate of decrease in Hbmass toward baseline values post
rHuEpo was similar to that of the increase during administration (20.53 gNkg21Nwk21, 95% confidence interval (CI) (20.68,
20.38) vs. 0.54 gNkg21Nwk21, CI (0.46, 0.63)) but Hbmass was still significantly elevated 4 weeks after administration
compared to baseline (13.761.1 gNkg21, p<0.001).</p>
<p>Conclusion: Running performance was improved following 4 weeks of rHuEpo and remained elevated 4 weeks after
administration compared to baseline. These field performance effects coincided with rHuEpo-induced elevated vΛ O2 max and
Hbmass.</p>
Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury
Inflammation plays a major pathological role in spinal cord injury (SCI). Although antiinflammatory treatment using the glucocorticoid methyprednisolone sodium succinate (MPSS) improved outcomes in several multicenter clinical trials, additional clinical experience suggests that MPSS is only modestly beneficial in SCI and poses a risk for serious complications. Recent work has shown that erythropoietin (EPO) moderates CNS tissue injury, in part by reducing inflammation, limiting neuronal apoptosis, and restoring vascular autoregulation. We determined whether EPO and MPSS act synergistically in SCI. Using a rat model of contusive SCI, we compared the effects of EPO [500-5,000 units/kg of body weight (kg-bw)] with MPSS (30 mg/kg-bw) for proinflammatory cytokine production, histological damage, and motor function at 1 month after a compression injury. Although high-dose EPO and MPSS suppressed proinflarnmatory cytokines within the injured spinal cord, only EPO was associated with reduced microglial infiltration, attenuated scar formation, and sustained neurological improvement. Unexpectedly, coadministration of MPSS antagonized the protective effects of EPO, even though the EPO receptor was up-regulated normally after injury. These data illustrate that the suppression of proinflammatory cytokines alone does not necessarily prevent secondary injury and suggest that glucocorticoids should not be coadministered in clinical trials evaluating the use of EPO for treatment of SCI
Erythropoietin: A potent inducer of peripheral immuno/inflammatory modulation in autoimmune EAE
Background: Beneficial effects of short-term erythropoietin (EPO) theraphy have been demonstrated in several animal models of acute neurologic injury, including experimental autoimmune encephalomyelitis(EAE)-the animal model of multiple sclerosis. We have found that EPO treatment substantially reduces the acute clinical paralysis seen EAE mice and this improvements is accompanied by a large reduction in the mononuclear cell infiltration and downregulation of glial MHC class II expression within the inflamed CNS. Other reports have recently indicated that peripherally generated anti-inflammatory CD4 +Foxp3 3 regulatory T cells (Tregs) and the IL17-producing CD4+ T helper cell (Th17) subpopulations play key antagonistic roles in EAE pathogenesis. However, no information regardind the effects of EPO theraphy on the behavior of the general mononuclear-lymphocyte population, Tregs or Th17 cells in EAE has emerged. Methods and Findings: We first determined in vivo that EPO theraphy markedly suppressed MOG specific T cell proliferation and sharply reduced the number of reactive dendritic cells (CD11c positive) in EAE lumph modes during both inductive and later symptomatic phases of MOG 35-55 induced EAE. We then determined the effect in vivo of EPO on numbers of peripheral Treg cells and Th17 cells. We found that EPO treatment modulated immune balance in both the periphery and the inflamed spinal cord by promoting a large expansion in Treg cells, inhibiting Th17 polarization and abrogating proliferation of the antigen presenting dendritic cell population. Finally we utilized tissue culture assays to show that exposure to EPO in vitro similarly downregulated MOG-specific T cell proliferation and also greatly suppressed T cell production of pro-inflammatory cytokines. Conclusions: Taken together, our findings reveal an important new locus whereby EPO induces substantial long-term tissue protection in the host through signalling to several critical subsets of immune cells that reside in the peripheral lymphatic system.published_or_final_versio
Market Work, Home Production, Consumer Demand and Unemployment among the Unskilled
We develop a general equilibrium model in which longer working time and higher labor force participation lead to a fall in unemployment. Longer working hours and higher labor force participation have two direct effects: People have higher incomes and less (leisure) time. This has implications for the composition of consumer demand, since people spend less time on home production. Instead, they outsource more domestic tasks to the market. Consumer demand shifts toward unskill-intensive goods. The relative demand for unskilled labor rises and unemployment falls. We provide empirical evidence for our theoretical predictions in several ways: We study the link between labor market participation, home production and the demand for household and similar services using the German time use survey conducted in 1991/92. In addition, we use panel data for 23 OECD countries between 1980 and 2003 to directly examine the link between labor force participation and the unemployment rate. The empirical results corroborate the predictions from the theoretical model
Differential Modulation of Angiogenesis by Erythropoiesis-Stimulating Agents in a Mouse Model of Ischaemic Retinopathy
BACKGROUND: Erythropoiesis stimulating agents (ESAs) are widely used to treat anaemia but concerns exist about their potential to promote pathological angiogenesis in some clinical scenarios. In the current study we have assessed the angiogenic potential of three ESAs; epoetin delta, darbepoetin alfa and epoetin beta using in vitro and in vivo models. METHODOLOGY/PRINCIPAL FINDINGS: The epoetins induced angiogenesis in human microvascular endothelial cells at high doses, although darbepoetin alfa was pro-angiogenic at low-doses (1-20 IU/ml). ESA-induced angiogenesis was VEGF-mediated. In a mouse model of ischaemia-induced retinopathy, all ESAs induced generation of reticulocytes but only epoetin beta exacerbated pathological (pre-retinal) neovascularisation in comparison to controls (p<0.05). Only epoetin delta induced a significant revascularisation response which enhanced normality of the vasculature (p<0.05). This was associated with mobilisation of haematopoietic stem cells and their localisation to the retinal vasculature. Darbepoetin alfa also increased the number of active microglia in the ischaemic retina relative to other ESAs (p<0.05). Darbepoetin alfa induced retinal TNFalpha and VEGF mRNA expression which were up to 4 fold higher than with epoetin delta (p<0.001). CONCLUSIONS: This study has implications for treatment of patients as there are clear differences in the angiogenic potential of the different ESAs
- β¦