8 research outputs found
The Alternative Splice Variant of Protein Tyrosine Kinase 6 Negatively Regulates Growth and Enhances PTK6-Mediated Inhibition of β-Catenin
Protein tyrosine kinase 6 (PTK6), also called breast tumor kinase (BRK), is expressed in epithelial cells of various tissues including the prostate. Previously it was shown that PTK6 is localized to epithelial cell nuclei in normal prostate, but becomes cytoplasmic in human prostate tumors. PTK6 is also primarily cytoplasmic in the PC3 prostate adenocarcinoma cell line. Sequencing revealed expression of wild type full-length PTK6 transcripts in addition to an alternative transcript lacking exon 2 in PC3 cells. The alternative transcript encodes a 134 amino acid protein, referred to here as ALT-PTK6, which shares the first 77 amino acid residues including the SH3 domain with full length PTK6. RT-PCR was used to show that ALT-PTK6 is coexpressed with full length PTK6 in established human prostate and colon cell lines, as well as in primary cell lines derived from human prostate tissue and tumors. Although interaction between full-length PTK6 and ALT-PTK6 was not detected, ALT-PTK6 associates with the known PTK6 substrates Sam68 and β-catenin in GST pull-down assays. Coexpression of PTK6 and ALT-PTK6 led to suppression of PTK6 activity and reduced association of PTK6 with tyrosine phosphorylated proteins. While ALT-PTK6 alone did not influence β-catenin/TCF transcriptional activity in a luciferase reporter assay, it enhanced PTK6-mediated inhibition of β-catenin/TCF transcription by promoting PTK6 nuclear functions. Ectopic expression of ALT-PTK6 led to reduced expression of the β-catenin/TCF targets Cyclin D1 and c-Myc in PC3 cells. Expression of tetracycline-inducible ALT-PTK6 blocked the proliferation and colony formation of PC3 cells. Our findings suggest that ALT-PTK6 is able to negatively regulate growth and modulate PTK6 activity, protein-protein associations and/or subcellular localization. Fully understanding functions of ALT-PTK6 and its impact on PTK6 signaling will be critical for development of therapeutic strategies that target PTK6 in cancer
Alternative Splicing Modulates Autoinhibition and SH3 Accessibility in the Src Kinase Fyn â–¿ â€
Src family kinases are central regulators of a large number of signaling pathways. To adapt to the idiosyncrasies of different cell types, these kinases may need a fine-tuning of their intrinsic molecular control mechanisms. Here, we describe on a molecular level how the Fyn kinase uses alternative splicing to adapt to different cellular environments. Using structural analysis, site-directed mutagenesis, and functional analysis, we show how the inclusion of either exon 7A or 7B affects the autoinhibition of Fyn and how this changes the SH3-dependent interaction and tyrosine phosphorylation of Sam68, with functional consequences for the Sam68-regulated survival of epithelial cells. Our results illustrate a novel mechanism of evolution that may contribute to the complexity of Src kinase regulation
Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation
The eukaryotic cell is a bustling collection of macromolecules acting cooperatively to mediate the functions required for cell viability. Specific, context-dependent and tightly controlled physical interactions between these cellular components govern the necessary physiological processes, from cell division to cell death. The specificity, conditionality, and regulation of these binding events depend on communication between the interacting molecules and their surroundings. For proteins, most of this communication is mediated by a variety of modules that are embedded within the protein sequence, can bind a wide array of ligands, and have catalytic, regulatory, or scaffolding activity. These functional units enable proteins to sense, integrate, and transmit environmental and cell state indicators and concomitantly instigate cellular decisions based on the information available to the system