188 research outputs found

    New near-IR observations of mesospheric CO2 and H2O clouds on Mars

    Full text link
    Carbon dioxide clouds, which are speculated by models on solar and extra-solar planets, have been recently observed near the equator of Mars. The most comprehensive identification of Martian CO2 ice clouds has been obtained by the near-IR imaging spectrometer OMEGA. CRISM, a similar instrument with a higher spatial resolution, cannot detect these clouds with the same method due to its shorter wavelength range. Here we present a new method to detect CO2 clouds using near-IR data based on the comparison of H2O and CO2 ice spectral properties. The spatial and seasonal distributions of 54 CRISM observations containing CO2 clouds are reported, in addition to 17 new OMEGA observations. CRISM CO2 clouds are characterized by grain size in the 0.5-2\mum range and optical depths lower than 0.3. The distributions of CO2 clouds inferred from OMEGA and CRISM are consistent with each other and match at first order the distribution of high altitude (>60km) clouds derived from previous studies. At second order, discrepancies are observed. We report the identification of H2O clouds extending up to 80 km altitude, which could explain part of these discrepancies: both CO2 and H2O clouds can exist at high, mesospheric altitudes. CRISM observations of afternoon CO2 clouds display morphologies resembling terrestrial cirrus, which generalizes a previous result to the whole equatorial clouds season. Finally, we show that morning OMEGA observations have been previously misinterpreted as evidence for cumuliform, and hence potentially convective, CO2 clouds.Comment: Vincendon, M., C. Pilorget, B. Gondet, S. Murchie, and J.-P. Bibring (2011), New near-IR observations of mesospheric CO2 and H2O clouds on Mars, J. Geophys. Res., 116, E00J0

    An Extremely Elongated Cloud Over Arsia Mons Volcano on Mars: I. Life Cycle

    Get PDF
    We report a previously unnoticed annually repeating phenomenon consisting of the daily formation of an extremely elongated cloud extending as far as 1,800 km westward from Arsia Mons. It takes place in the solar longitude (Ls) range of ∼220°–320°, around the Southern solstice. We study this Arsia Mons Elongated Cloud (AMEC) using images from different orbiters, including ESA Mars Express, NASA MAVEN, Viking 2, MRO, and ISRO Mars Orbiter Mission (MOM). We study the AMEC in detail in Martian year (MY) 34 in terms of local time and Ls and find that it exhibits a very rapid daily cycle: the cloud growth starts before sunrise on the western slope of the volcano, followed by a westward expansion that lasts 2.5 h with a velocity of around 170 m/s in the mesosphere (∼45 km over the areoid). The cloud formation then ceases, detaches from its formation point, and continues moving westward until it evaporates before the afternoon, when most sun-synchronous orbiters make observations. Moreover, we comparatively study observations from different years (i.e., MYs 29–34) in search of interannual variations and find that in MY33 the cloud exhibits lower activity, while in MY34 the beginning of its formation was delayed compared with other years, most likely due to the Global Dust Storm. This phenomenon takes place in a season known for the general lack of clouds on Mars. In this paper we focus on observations, and a theoretical interpretation will be the subject of a separate paper.This work has been supported by the Spanish project AYA2015-65041-P and PID2019-109467GB-I00 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT-1366-19. JHB was supported by ESA Contract No. 4000118461/16/ES/JD, Scientific Support for Mars Express Visual Monitoring Camera. The Aula EspaZio Gela is supported by a grant from the Diputación Foral de Bizkaia (BFA). We acknowledge support from the Faculty of the European Space Astronomy Center (ESAC). Special thanks are due to the Mars Express Science Ground Segment and Flight Control Team at ESAC and ESOC. The contributions by K.C and N.M.S were supported by NASA through the MAVEN project

    The Petrochemistry of Jake_M: A Martian Mugearite

    Full text link
    “Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (&gt;15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).</jats:p

    Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover

    Full text link
    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.</jats:p

    The Mars Express limbs observations database

    Get PDF
    The capability to orient Mars Express allows a great diversity of observations modes, in particular nadir and limb. During day and night limb’s observations, 4 out of 7 MEX instruments (the spectrometers: SPICAM, OMEGA, PFS and the high-resolution camera HRSC) work together to provide spectra (.12 µ�m to 45 �µm) of the Martian atmosphere, at each altitude step, with the associated image. We will present the limbs database of more than 10 years in orbit with striking results (dust and clouds detached layers, day and night emissions). The database is now accessible to the scientific community via the ESA/PSA website (www.rssd.esa.int/PSA)

    Phobos composition: a reappraisal, based on Omega/MEx observations

    No full text
    &amp;lt;p&amp;gt;The imaging spectrometer OMEGA [1] operates in the VIS-NIR range, covering the (0.35 &amp;amp;#181;m to 5.1 &amp;amp;#181;m) range in 352 contiguous spectral channels.&amp;amp;#160; This spectral range has been chosen as it includes diagnostic signatures of most surface mafic and hydrated minerals, frosts and ices. With a 1.2 mrad IFOV, the footprint varies from 40 m when imaging from 40 kms, up to 4.8 km from an altitude of 4000 km: this allows a global spectral coverage of Phobos to be achieved, at various spatial resolution.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;Along its 16 years of orbital operations, Mars Express has performed tens of close flybys of Phobos, at altitudes down to ~ 50 kms. OMEGA has acquired unprecedented compositional data sets, in both the visible and the near-infrared spectral range. We shall present and discuss these observations, as witnesses of Phobos origin, with their relevance to the upcoming MMX JAXA mission.&amp;lt;/p&amp;gt; </jats:p
    corecore