2,748 research outputs found
Tensin1 expression and function in chronic obstructive pulmonary disease
open access articleChronic obstructive pulmonary disease (COPD) constitutes a major cause of morbidity and
mortality. Genome wide association studies have shown significant associations between airflow
obstruction or COPD with a non-synonymous SNP in the TNS1 gene, which encodes tensin1.
However, the expression, cellular distribution and function of tensin1 in human airway tissue and
cells are unknown. We therefore examined these characteristics in tissue and cells from controls
and people with COPD or asthma.
Airway tissue was immunostained for tensin1. Tensin1 expression in cultured human
airway smooth muscle cells (HASMCs) was evaluated using qRT-PCR, western blotting and
immunofluorescent staining. siRNAs were used to downregulate tensin1 expression.
Tensin1 expression was increased in the airway smooth muscle and lamina propria in COPD
tissue, but not asthma, when compared to controls. Tensin1 was expressed in HASMCs and
upregulated by TGFβ1. TGFβ1 and fibronectin increased the localisation of tensin1 to fibrillar
adhesions. Tensin1 and α-smooth muscle actin (αSMA) were strongly co-localised, and tensin1
depletion in HASMCs attenuated both αSMA expression and contraction of collagen gels.
In summary, tensin1 expression is increased in COPD airways, and may promote airway
obstruction by enhancing the expression of contractile proteins and their localisation to stress
fibres in HASMCs
Evidence for a novel Kit adhesion domain mediating human mast cell adhesion to structural airway cells
Background: Human lung mast cells (HLMCs) infiltrate the airway epithelium and airway smooth muscle (ASM) in asthmatic airways. The mechanism of HLMC adhesion to both cell types is only partly defined, and adhesion is not inhibited by function-blocking anti-Kit and anti-stem cell factor (SCF) antibodies. Our aim was to identify adhesion molecules expressed by human mast cells that mediate adhesion to human ASM cells (HASMCs) and human airway epithelial cells.
Methods: We used phage-display to isolate single chain Fv (scFv) antibodies with adhesion-blocking properties from rabbits immunised with HLMC and HMC-1 membrane proteins.
Results: Post-immune rabbit serum labelled HLMCs in flow cytometry and inhibited their adhesion to human BEAS-2B epithelial cells. Mast cell-specific scFvs were identified which labelled mast cells but not Jurkat cells by flow cytometry. Of these, one scFv (A1) consistently inhibited mast cell adhesion to HASMCs and BEAS-2B epithelial cells by about 30 %. A1 immunoprecipitated Kit (CD117) from HMC-1 lysates and bound to a human Kit-expressing mouse mast cell line, but did not interfere with SCF-dependent Kit signalling.
Conclusion: Kit contributes to human mast cell adhesion to human airway epithelial cells and HASMCs, but may utilise a previously unidentified adhesion domain that lies outside the SCF binding site. Targeting this adhesion pathway might offer a novel approach for the inhibition of mast cell interactions with structural airway cells, without detrimental effects on Kit signalling in other tissues
Regional ventilation changes in the lung: Treatment response mapping by using hyperpolarized gas MR imaging as a quantitative biomarker
Purpose: To assess the magnitude of regional response to respiratory therapeutics in the lungs using Treatment Response Mapping (TRM) with hyperpolarized gas MRI. TRM is used to quantify regional physiological response in asthmatic adults using a bronchodilator challenge.
Methods: The study was approved by the national research ethics committee and performed with informed consent. Imaging was performed in 20 adult asthmatic patients using hyperpolarized 3He ventilation MRI. Two sets of baseline images were acquired before inhalation of a bronchodilator (Inhaled Salbutamol 400 mcg) and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), is calculated as the difference in regional gas distribution (R(r) = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global TRM (ΔRnet) was then used as global lung index for comparison with metrics of bronchodilator response measured using spirometry and the global imaging metric, percentage ventilated volume (%VV).
Results: ΔRnet showed significant correlation (p<0.01) with changes in FEV1 (r=0.70), FVC (r=0.84) and %VV (r=0.56). A significant (p<0.01) positive treatment effect was detected by all metrics, however ΔRnet showed a lower inter-subject coefficient of variation (CV=64%) than all of the other tests (CV≥99%).
Conclusions: TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as sensitive regional outcome metric of novel respiratory interventions.
Online supplemental material is available for this article
Cysteinyl-leukotrienes contribute to sputum eosinophil chemotactic activity in asthmatics
Background: Cysteinyl-leukotrienes are lipid derived mediators involved in asthma. They are able to stimulate eosinophil chemotaxis in vitro. Induced sputum from asthmatics has been shown to contain eosinophil chemotactic activity. The purpose of our study was to evaluate the contribution of cysteinyl-leukotrienes to sputum eosinophil chemotactic activity in asthmatics and to seek whether there might be differences between asthmatics free of inhaled corticosteroids vs those regularly receiving this treatment. Methods: Twenty-two patients (11 corticosteroid free, mean FEV1 99% predicted, 11 corticosteroid-treated, mean FEV1 77% predicted) recruited from our asthma clinic underwent a sputum induction. Sputum was processed according to standard procedure. Eosinophil chemotactic activity contained in the fluid phase was assessed using Boyden microchamber model and expressed as chemotaxis index (CI). Cysteinyl-leukotrienes were measured in sputum supernatant by ELISA and their role in sputum eosionophil chemotactic activity was evaluated by using montelukast, a selective antagonist of a cys-LT1 receptor. Results: Cysteinyl-leukotrienes were well detectable in sputum supernatants from both steroid-naive (247 +/- 42 pg/ml) and steroid-treated (228 +/- 26 pg/ml) asthmatics. Sputum eosinophil chemotactic activity was indiscriminately present in both corticosteroid-naive (CI: 2.61 +/- 0.22) and corticosteroid-treated (2.98 +/- 0.35) asthmatics. Montelukast (100 mu M) significantly inhibited the eosinophil chemotactic activity in both groups achieving a mean inhibition of 54.2 +/- 9.2% (P < 0.001) and 64.7 +/- 7.8% (P < 0.001) in steroid-naive and steroid-treated asthmatics respectively. Conclusion: Cysteinyl-leukotrienes actively participate in sputum eosinophil chemotactic activity found in asthmatics irrespective of whether they are or not under treatment with inhaled corticoids.Peer reviewe
A national programme for mastitis control in Australia: Countdown Downunder
In 1998, Countdown Downunder, Australia's national mastitis and cell count control programme, was created. With funding from the country's leading dairy organisation, Dairy Australia, this programme was originally intended to run for three years but is now in its tenth year. As it was the first time Australia had attempted a national approach to mastitis control on the farm, the first three years of the programme were largely concerned with the development of resources to be used by farmers and service providers. The second three years were devoted to training with both groups. Since that time, Countdown Downunder has entered into a second resource development phase. The goal of the programme was to achieve a reduction in the bulk milk somatic cell count from the Australian dairy herd. To achieve this, the programme had to develop resources with clear and consistent messages around mastitis and somatic cell count control on farms. It was determined that progress toward the goals would be made more rapidly if service providers were trained in the use of these resources prior to farmers. This paper reviews the Countdown Downunder programme from 1998 to 2007
Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds
Human airway smooth muscle (HASM) contraction plays a central role in regulating airway resistance in both healthy and asthmatic bronchioles. In vitro studies that investigate the intricate mechanisms that regulate this contractile process are predominantly conducted on tissue culture plastic, a rigid, 2D geometry, unlike the 3D microenvironment smooth muscle cells are exposed to in situ. It is increasingly apparent that cellular characteristics and responses are altered between cells cultured on 2D substrates compared with 3D topographies. Electrospinning is an attractive method to produce 3D topographies for cell culturing as the fibers produced have dimensions within the nanometer range, similar to cells' natural environment. We have developed an electrospun scaffold using the nondegradable, nontoxic, polymer polyethylene terephthalate (PET) composed of uniaxially orientated nanofibers and have evaluated this topography's effect on HASM cell adhesion, alignment, and morphology. The fibers orientation provided contact guidance enabling the formation of fully aligned sheets of smooth muscle. Moreover, smooth muscle cells cultured on the scaffold present an elongated cell phenotype with altered contractile protein levels and distribution. HASM cells cultured on this scaffold responded to the bronchoconstrictor bradykinin. The platform presented provides a novel in vitro model that promotes airway smooth muscle cell development toward a more in vivo-like phenotype while providing topological cues to ensure full cell alignment
Using fractional exhaled nitric oxide (FeNO) to diagnose steroid-responsive disease and guide asthma management in routine care
Acknowledgements We thank Robin Taylor for his informative thinking and publications on FeNO, which have helped to influence and direct the thinking of the authors. Funding Extraction of the real-life dataset was funded by Research in Real Life Limited, the analysis of the dataset and the writing of this manuscript were co-funded (50:50) by Research in Real Life Limited and Aerocrine.Peer reviewedPublisher PD
A method for quantitative analysis of regional lung ventilation using deformable image registration of CT and hybrid hyperpolarized gas/H-1 MRI
Hyperpolarized gas magnetic resonance imaging (MRI) generates highly detailed maps of lung ventilation and physiological function while CT provides corresponding anatomical and structural information. Fusion of such complementary images enables quantitative analysis of pulmonary structure-function. However, direct image registration of hyperpolarized gas MRI to CT is problematic, particularly in lungs whose boundaries are difficult to delineate due to ventilation heterogeneity. This study presents a novel indirect method of registering hyperpolarized gas MRI to CT utilizing 1H-structural MR images that are acquired in the same breath-hold as the gas MRI. The feasibility of using this technique for regional quantification of ventilation of specific pulmonary structures is demonstrated for the lobes.
The direct and indirect methods of hyperpolarized gas MRI to CT image registration were compared using lung images from 15 asthma patients. Both affine and diffeomorphic image transformations were implemented. Registration accuracy was evaluated using the target registration error (TRE) of anatomical landmarks identified on 1H MRI and CT. The Wilcoxon signed-rank test was used to test statistical significance.
For the affine transformation, the indirect method of image registration was significantly more accurate than the direct method (TRE = 14.7 ± 3.2 versus 19.6 ± 12.7 mm, p = 0.036). Using a deformable transformation, the indirect method was also more accurate than the direct method (TRE = 13.5 ± 3.3 versus 20.4 ± 12.8 mm, p = 0.006).
Accurate image registration is critical for quantification of regional lung ventilation with hyperpolarized gas MRI within the anatomy delineated by CT. Automatic deformable image registration of hyperpolarized gas MRI to CT via same breath-hold 1H MRI is more accurate than direct registration. Potential applications include improved multi-modality image fusion, functionally weighted radiotherapy planning, and quantification of lobar ventilation in obstructive airways disease
Conducting retrospective impact analysis to inform a medical research charity’s funding strategies: The case of Asthma UK
© 2013 Hanney et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.BACKGROUND: Debate is intensifying about how to assess the full range of impacts from medical research. Complexity increases when assessing the diverse funding streams of funders such as Asthma UK, a charitable patient organisation supporting medical research to benefit people with asthma. This paper aims to describe the various impacts identified from a range of Asthma UK research, and explore how Asthma UK utilised the characteristics of successful funding approaches to inform future research strategies. METHODS: We adapted the Payback Framework, using it both in a survey and to help structure interviews, documentary analysis, and case studies. We sent surveys to 153 lead researchers of projects, plus 10 past research fellows, and also conducted 14 detailed case studies. These covered nine projects and two fellowships, in addition to the innovative case studies on the professorial chairs (funded since 1988) and the MRC-Asthma UK Centre in Allergic Mechanisms of Asthma (the ‘Centre’) which together facilitated a comprehensive analysis of the whole funding portfolio. We organised each case study to capture whatever academic and wider societal impacts (or payback) might have arisen given the diverse timescales, size of funding involved, and extent to which Asthma UK funding contributed to the impacts. RESULTS: Projects recorded an average of four peer-reviewed journal articles. Together the chairs reported over 500 papers. All streams of funding attracted follow-on funding. Each of the various categories of societal impacts arose from only a minority of individual projects and fellowships. Some of the research portfolio is influencing asthma-related clinical guidelines, and some contributing to product development. The latter includes potentially major breakthroughs in asthma therapies (in immunotherapy, and new inhaled drugs) trialled by university spin-out companies. Such research-informed guidelines and medicines can, in turn, contribute to health improvements. The role of the chairs and the pioneering collaborative Centre is shown as being particularly important. CONCLUSIONS: We systematically demonstrate that all types of Asthma UK’s research funding assessed are making impacts at different levels, but the main societal impacts from projects and fellowships come from a minority of those funded. Asthma UK used the study’s findings, especially in relation to the Centre, to inform research funding strategies to promote the achievement of impact.This study was funded by Asthma UK
Recommended from our members
A Polymorphism Affecting MYB Binding within the Promoter of the PDCD4 Gene is Associated with Severe Asthma in Children
A previous genome-wide association study in asthma revealed putative associations that merit further investigation. In this study, the genome-wide significant associations of SNPs at the 5% false discovery rate were examined in independent groups of severe asthmatics. The panel consisted of 397 severe asthmatic adults, 116 severe asthmatic children, and a collection of 207 family-trios with an asthmatic proband. Three SNPs in the PDCD4 gene (rs6585018:G>A, rs1322997:C>A, and rs34104444:G>A) were significantly associated with severe childhood asthma (P values: 0.003, 0.002, 0.004) and total immunoglobulin E (IgE) levels (P values: 0.034, 0.041, 0.052). In an independent group of 234 asthmatic children and 652 controls, PDCD4 SNPs rs1407696:T>G and rs11195360:T>C were associated with total IgE levels (P values: 0.006, 0.014). In silico analysis of PDCD4 locus showed that rs6585018:G>A had the potential to affect MYB transcription factor binding, shown to act as a PDCD4-transcription inducer. Electromobility shift assays and reporter assays revealed that rs6585018:G>A alters MYB binding thereby influencing the expression of PDCD4. SNPs within MYB itself confer susceptibility to eosinophilia and asthma. Our association between a variant MYB binding site in PDCD4 and the severest form of childhood asthma therefore suggests that PDCD4 is a novel molecule of importance to asthmatic inflammatory responses
- …
