3,172 research outputs found

    Evidence of an advantage in visuo-spatial memory for bilingual compared to monolingual speakers

    Get PDF
    Previous research has indicated that bilinguals outperform monolinguals in cognitive tasks involving spatial working memory. The present study examines evidence for this claim using a different and arguably more ecologically valid method (the change blindness task). Bilingual and monolingual participants were presented with two versions of the same scenes and required to press a key as soon as they identified the alteration. They also completed the word and alpha span tasks, and the Corsi blocks task. The results in the change blindness task, controlled for group differences in non-verbal reasoning, indicated that bilinguals were faster and more accurate than monolinguals at detecting visual changes. Similar group differences were found on the Corsi block task. Unlike previous findings, no group differences were found on the verbal memory tasks. The results are discussed with reference to mechanisms of cognitive control as a locus of transfer between bilingualism and spatial working memory tasks

    MitoNeoD:a mitochondria-targeted superoxide probe

    Get PDF
    Mitochondrial superoxide (O2⋅−) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅−, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅− probe, MitoNeoD, which can assess O2⋅− changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅−-sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅− over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅− from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅−production in health and disease

    Global biogeographic patterns of avian morphological diversity

    Get PDF
    Understanding the biogeographical patterns, and evolutionary and environmental drivers, underpinning morphological diversity are key for determining its origins and conservation. Using a comprehensive set of continuous morphological traits extracted from museum collections of 8353 bird species, including geometric morphometric beak shape data, we find that avian morphological diversity is unevenly distributed globally, even after controlling for species richness, with exceptionally dense packing of species in hyper-diverse tropical hotspots. At the regional level, these areas also have high morphological variance, with species exhibiting high phenotypic diversity. Evolutionary history likely plays a key role in shaping these patterns, with evolutionarily old species contributing to niche expansion, and young species contributing to niche packing. Taken together, these results imply that the tropics are both ‘cradles’ and ‘museums’ of phenotypic diversity

    NOAA Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation

    Get PDF
    EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.

    The signature of competition in ecomorphological traits across the avian radiation

    Get PDF
    Competition for shared resources represents a fundamental driver of biological diversity. However, the tempo and mode of phenotypic evolution in deep-time has been predominantly investigated using trait evolutionary models which assume that lineages evolve independently from each other. Consequently, the role of species interactions in driving macroevolutionary dynamics remains poorly understood. Here, we quantify the prevalence for signatures of competition between related species in the evolution of ecomorphological traits across the bird radiation. We find that mechanistic trait models accounting for the effect of species interactions on phenotypic divergence provide the best fit for the data on at least one trait axis in 27 out of 59 clades ranging between 21 and 195 species. Where it occurs, the signature of competition generally coincides with positive species diversity-dependence, driven by the accumulation of lineages with similar ecologies, and we find scarce evidence for trait-dependent or negative diversity-dependent phenotypic evolution. Overall, our results suggest that the footprint of interspecific competition is often eroded in long-term patterns of phenotypic diversification, and that other selection pressures may predominantly shape ecomorphological diversity among extant species at macroevolutionary scales

    Identification and quantification of protein S-nitrosation by nitrite in the mouse heart during ischemia.

    Get PDF
    Nitrate (NO3-) and nitrite (NO2-) are known to be cardioprotective and to alter energy metabolism in vivo NO3- action results from its conversion to NO2- by salivary bacteria, but the mechanism(s) by which NO2- affects metabolism remains obscure. NO2- may act by S-nitrosating protein thiols, thereby altering protein activity. But how this occurs, and the functional importance of S-nitrosation sites across the mammalian proteome, remain largely uncharacterized. Here we analyzed protein thiols within mouse hearts in vivo using quantitative proteomics to determine S-nitrosation site occupancy. We extended the thiol-redox proteomic technique, isotope-coded affinity tag labeling, to quantify the extent of NO2--dependent S-nitrosation of proteins thiols in vivo Using this approach, called SNOxICAT (S-nitrosothiol redox isotope-coded affinity tag), we found that exposure to NO2- under normoxic conditions or exposure to ischemia alone results in minimal S-nitrosation of protein thiols. However, exposure to NO2- in conjunction with ischemia led to extensive S-nitrosation of protein thiols across all cellular compartments. Several mitochondrial protein thiols exposed to the mitochondrial matrix were selectively S-nitrosated under these conditions, potentially contributing to the beneficial effects of NO2- on mitochondrial metabolism. The permeability of the mitochondrial inner membrane to HNO2, but not to NO2-, combined with the lack of S-nitrosation during anoxia alone or by NO2- during normoxia places constraints on how S-nitrosation occurs in vivo and on its mechanisms of cardioprotection and modulation of energy metabolism. Quantifying S-nitrosated protein thiols now allows determination of modified cysteines across the proteome and identification of those most likely responsible for the functional consequences of NO2- exposure

    Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model

    Get PDF
    BACKGROUND: Both cell-associated and cell-free HIV virions are present in semen and cervical secretions of HIV-infected individuals. Thus, topical microbicides may need to inactivate both cell-associated and cell-free HIV to prevent sexual transmission of HIV/AIDS. To determine if the mild acidity of the healthy vagina and acid buffering microbicides would prevent transmission by HIV-infected leukocytes, we measured the effect of pH on leukocyte motility, viability and intracellular pH and tested the ability of an acidic buffering microbicide (BufferGel(®)) to prevent the transmission of cell-associated HIV in a HuPBL-SCID mouse model. METHODS: Human lymphocyte, monocyte, and macrophage motilities were measured as a function of time and pH using various acidifying agents. Lymphocyte and macrophage motilities were measured using video microscopy. Monocyte motility was measured using video microscopy and chemotactic chambers. Peripheral blood mononuclear cell (PBMC) viability and intracellular pH were determined as a function of time and pH using fluorescent dyes. HuPBL-SCID mice were pretreated with BufferGel, saline, or a control gel and challenged with HIV-1-infected human PBMCs. RESULTS: Progressive motility was completely abolished in all cell types between pH 5.5 and 6.0. Concomitantly, at and below pH 5.5, the intracellular pH of PBMCs dropped precipitously to match the extracellular medium and did not recover. After acidification with hydrochloric acid to pH 4.5 for 60 min, although completely immotile, 58% of PBMCs excluded ethidium homodimer-1 (dead-cell dye). In contrast, when acidified to this pH with BufferGel, a microbicide designed to maintain vaginal acidity in the presence of semen, only 4% excluded dye at 10 min and none excluded dye after 30 min. BufferGel significantly reduced transmission of HIV-1 in HuPBL-SCID mice (1 of 12 infected) compared to saline (12 of 12 infected) and a control gel (5 of 7 infected). CONCLUSION: These results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV
    • …
    corecore