18 research outputs found

    Unveiling the mechanisms of neuropathic pain suppression: perineural resiniferatoxin targets Trpv1 and beyond

    Get PDF
    Neuropathic pain arises from damage or disorders affecting the somatosensory system. In rats, L5 nerve injury induces thermal and mechanical hypersensitivity/hyperalgesia. Recently, we demonstrated that applying resiniferatoxin (RTX) directly on uninjured L3 and L4 nerves alleviated thermal and mechanical hypersensitivity resulting from L5 nerve injury. Herein, using immunohistochemistry, Western blot, and qRT-PCR techniques, we reveal that perineural application of RTX (0.002%) on the L4 nerve substantially downregulated the expression of its receptor (Trpv1) and three different voltage-gated ion channels (Nav1.9, Kv4.3, and Cav2.2). These channels are found primarily in small-sized neurons and show significant colocalization with Trpv1 in the dorsal root ganglion (DRG). However, RTX treatment did not affect the expression of Kv1.1, Piezo2 (found in large-sized neurons without colocalization with Trpv1), and Kir4.1 (localized in satellite cells) in the ipsilateral DRGs. Furthermore, RTX application on L3 and L4 nerves reduced the activation of c-fos in the spinal neurons induced by heat stimulation. Subsequently, we investigated whether applying RTX to the L3 and L4 nerves 3 weeks before the L5 nerve injury could prevent the onset of neuropathic pain. Both 0.002 and 0.004% concentrations of RTX produced significant analgesic effects, while complete prevention of thermal and mechanical hypersensitivity required a concentration of 0.008%. Importantly, this preventive effect on neuropathic manifestations was not associated with nerve degeneration, as microscopic examination revealed no morphological changes. Overall, this study underscores the mechanisms and the significance of perineural RTX treatment applied to adjacent uninjured nerves in entirely preventing nerve injury-induced neuropathic pain in humans and animals

    Diabetes Mellitus Alters the Immuno-Expression of Neuronal Nitric Oxide Synthase in the Rat Pancreas

    No full text
    Nitric oxide is generated from nitric oxide synthase following hyperglycemia-induced oxidative stress during the course of diabetes mellitus (DM). We examined the temporal immuno-expression of neuronal nitric oxide synthase (nNOS) in the pancreas of diabetic and non-diabetic rats using immunohistochemical, immunofluorescence and western blot techniques 12 h, 24 h, 1 week, 2 weeks, 1, 8 and 15 months after induction of DM. nNOS co-localized with pancreatic beta cells but disappears 12 h after the onset of DM. In contrast, the nNOS content of pancreatic nerves increased significantly (p < 0.001) 24 h after the induction of DM, and decreased sharply thereafter. However, nNOS-positive ganglion cells were observed even 15 months post-diabetes. ROS increased by more than 100% two months after the onset of DM compared to non-diabetic control but was significantly (p < 0.000001) reduced at 9 months after the induction of DM. The pancreatic content of GSH increased significantly (p < 0.02) after 9 months of DM. Although, TBARS content was significantly (p < 0.009; p < 0.002) lower in aged (9 months) non-diabetic and DM rats, TBARS rate was markedly (p < 0.02) higher 9 months after the induction of DM when compared to younger age group. In conclusion, nNOS is present in pancreatic beta cell, but disappears 12 h after the onset of diabetes. In contrast, the tissue level of nNOS of pancreatic nerves increased in the first week of diabetes, followed by a sharp reduction. nNOS may play important roles in the metabolism of pancreatic beta cell

    Cutaneous Injection of Resiniferatoxin Completely Alleviates and Prevents Nerve-Injury-Induced Neuropathic Pain

    No full text
    Fifth lumbar (L5) nerve injury in rodent produces neuropathic manifestations in the corresponding hind paw. The aim of this study was to investigate the effect of cutaneous injection of resiniferatoxin (RTX), a TRPV1 receptor agonist, in the rat’s hind paw on the neuropathic pain induced by L5 nerve injury. The results showed that intraplantar injection of RTX (0.002%, 100 µL) (1) completely reversed the development of chronic thermal and mechanical hypersensitivity; (2) completely prevented the development of nerve-injury-induced thermal and mechanical hypersensitivity when applied one week earlier; (3) caused downregulation of nociceptive pain markers, including TRPV1, IB4 and CGRP, and upregulation of VIP in the ipsilateral dorsal horn of spinal cord and dorsal root ganglion (DRG) immunohistochemically and a significant reduction in the expression of TRPV1 mRNA and protein in the ipsilateral DRG using Western blot and qRT-PCR techniques; (4) caused downregulation of PGP 9.5- and CGRP-immunoreactivity in the injected skin; (5) produced significant suppression of c-fos expression, as a neuronal activity marker, in the spinal neurons in response to a second intraplantar RTX injection two weeks later. This work identifies the ability of cutaneous injection of RTX to completely alleviate and prevent the development of different types of neuropathic pain in animals and humans

    Saturated fatty acid regulated lncRNA dataset during in vitro human embryonic neurogenesis

    No full text
    Human embryonic stem cells (hESCs) were used as a model of embryonic neurogenesis to identify the effect of excess fat uptake on neurodevelopment (Ardah et al., 2018). Herein, by directed differentiation of hESCs into neurons using established protocols, this data was generated for expression profiles of select lncRNAs during in vitro embryonic neurogenesis and their differential expression due to excess fat (palmitate) uptake. The undifferentiated hESCs were treated with 250 µM palmitate after identifying it as the highest concentration which is non-toxic to these cells. The palmitate treated hESCs were differentiated towards neurons keeping the levels of palmitate consistent throughout the differentiation process and fat uptake was confirmed by Oil Red O staining. The expression analysis of lncRNAs was performed by RT-qPCR on vehicle control and palmitate treated cells from 4 stages of differentiation, D0 (undifferentiated hESCs), D12 (neural stem cells), D44 (neural progenitors) and D70 (neurons) using lncRNAs array plates from Arraystar Inc. which contains 372 functionally identified lncRNAs found to be associated with lipid metabolism and other pathways (Cat# AS-NR-004)

    Effects of Obesity and Diabesity on Ventricular Muscle Structure and Function in the Zucker Rat

    No full text
    (1) Background: Cardiovascular complications are a leading cause of morbidity and mortality in diabetic patients. The effects of obesity and diabesity on the function and structure of ventricular myocytes in the Zucker fatty (ZF) rat and the Zucker diabetic fatty (ZDF) rat compared to Zucker lean (ZL) control rats have been investigated. (2) Methods: Shortening and intracellular Ca2+ were simultaneously measured with cell imaging and fluorescence photometry, respectively. Ventricular muscle protein expression and structure were investigated with Western blot and electron microscopy, respectively. (3) Results: The amplitude of shortening was increased in ZF compared to ZL but not compared to ZDF myocytes. Resting Ca2+ was increased in ZDF compared to ZL myocytes. Time to half decay of the Ca2+ transient was prolonged in ZDF compared to ZL and was reduced in ZF compared to ZL myocytes. Changes in expression of proteins associated with cardiac muscle contraction are presented. Structurally, there were reductions in sarcomere length in ZDF and ZF compared to ZL and reductions in mitochondria count in ZF compared to ZDF and ZL myocytes. (4) Conclusions: Alterations in ventricular muscle proteins and structure may partly underlie the defects observed in Ca2+ signaling in ZDF and ZF compared to ZL rat hearts

    Cellular and Molecular Variations in Male and Female Murine Skeletal Muscle after Long-Term Feeding with a High-Fat Diet

    No full text
    Current information regarding the effects of a high-fat diet (HFD) on skeletal muscle is contradictory. This study aimed to investigate the effects of a long-term HFD on skeletal muscle in male and female mice at the morphological, cellular, and molecular levels. Adult mice of the C57BL/6 strain were fed standard chow or an HFD for 20 weeks. The tibialis anterior muscles were dissected, weighed, and processed for cellular and molecular analyses. Immunocytochemical and morphometric techniques were applied to quantify fiber size, satellite cells (SCs), and myonuclei. Additionally, PCR array and RT-qPCR tests were performed to determine the expression levels of key muscle genes. Muscles from HFD mice showed decreases in weight, SCs, and myonuclei, consistent with the atrophic phenotype. This atrophy was associated with a decrease in the percentage of oxidative fibers within the muscle. These findings were further confirmed by molecular analyses that showed significant reductions in the expression of Pax7, Myh1, and Myh2 genes and increased Mstn gene expression. Male and female mice showed similar trends in response to HFD-induced obesity. These findings indicate that the long-term effects of obesity on skeletal muscle resemble those of age-related sarcopenia

    Differential response of oxidative and glycolytic skeletal muscle fibers to mesterolone

    Get PDF
    International audienceOxidative and glycolytic muscle fibers differ in their ultrastructure, metabolism, and responses to physiological stimuli and pathological insults. We examined whether these fibers respond differentially to exogenous anabolic androgenic steroids (AASs) by comparing morphological and histological changes between the oxidative anterior latissimus dorsi (ALD) and glycolytic pectoralis major (PM) fibers in adult avian muscles. Adult female White Leghorn chickens (Gallus gallus) were randomly divided into five groups: a vehicle control and four mesterolone treatment groups (4, 8, 12, and 16 mg/kg). Mesterolone was administered orally every three days for four weeks. Immunocytochemical techniques and morphometric analyses were employed to measure the changes in muscle weight, fiber size, satellite cell (SC) composition, and number of myonuclei. Mesterolone increased both body and muscle weights and induced hypertrophy in glycolytic PM fibers but not in oxidative ALD fibers. Mesterolone induced SC proliferation in both muscles; however, the myonuclear accretion was noticeable only in the PM muscle. In both muscles, the collective changes maintained a constant myonuclear domain size and the changes were dose independent. In conclusion, mesterolone induced distinct dose-independent effects in avian oxidative and glycolytic skeletal muscle fibers; these findings might be clinically valuable in the treatment of age-related sarcopenia

    Higher O-GlcNAc Levels Are Associated with Defects in Progenitor Proliferation and Premature Neuronal Differentiation during in-Vitro Human Embryonic Cortical Neurogenesis

    No full text
    The nutrient responsive O-GlcNAcylation is a dynamic post-translational protein modification found on several nucleocytoplasmic proteins. Previous studies have suggested that hyperglycemia induces the levels of total O-GlcNAcylation inside the cells. Hyperglycemia mediated increase in protein O-GlcNAcylation has been shown to be responsible for various pathologies including insulin resistance and Alzheimer's disease. Since maternal hyperglycemia during pregnancy is associated with adverse neurodevelopmental outcomes in the offspring, it is intriguing to identify the effect of increased protein O-GlcNAcylation on embryonic neurogenesis. Herein using human embryonic stem cells (hESCs) as model, we show that increased levels of total O-GlcNAc is associated with decreased neural progenitor proliferation and premature differentiation of cortical neurons, reduced AKT phosphorylation, increased apoptosis and defects in the expression of various regulators of embryonic corticogenesis. As defects in proliferation and differentiation during neurodevelopment are common features of various neurodevelopmental disorders, increased O-GlcNAcylation could be one mechanism responsible for defective neurodevelopmental outcomes in metabolically compromised pregnancies such as diabetes
    corecore