24 research outputs found

    Genome-Wide Transcriptional Responses of Mycobacterium to Antibiotics

    Get PDF
    Antibiotics can stimulate or depress gene expression in bacteria. The analysis of transcriptional responses of Mycobacterium to antimycobacterial compounds has improved our understanding of the mode of action of various drug classes and the efficacy and effect of such compounds on the global metabolism of Mycobacterium. This approach can provide new insights for known antibiotics, for example those currently used for tuberculosis treatment, as well as help to identify the mode of action and predict the targets of new compounds identified by whole-cell screening assays. In addition, changes in gene expression profiles after antimycobacterial treatment can provide information about the adaptive ability of bacteria to escape the effects of antibiotics and allow monitoring of the physiology of the bacteria during treatment. Genome-wide expression profiling also makes it possible to pinpoint genes differentially expressed between drug sensitive Mycobacterium and multidrug-resistant clinical isolates. Finally, genes involved in adaptive responses and drug tolerance could become new targets for improving the efficacy of existing antibiotics

    An Extended Network of Genomic Maintenance in the Archaeon Pyrococcus abyssi Highlights Unexpected Associations between Eucaryotic Homologs.

    Get PDF
    In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways. The development of genetic system in hyperthermophilic archaea is still at a modest stage hampering the use of complementary approaches of reverse genetics and biochemistry to elucidate the function of new candidate DNA repair gene. To gain insights into genomic maintenance processes in hyperthermophilic archaea, a protein-interaction network centred on informational processes of Pyrococcus abyssi was generated by affinity purification coupled with mass spectrometry. The network consists of 132 interactions linking 87 proteins. These interactions give insights into the connections of DNA replication with recombination and repair, leading to the discovery of new archaeal components and of associations between eucaryotic homologs. Although this approach did not allow us to clearly delineate new DNA pathways, it provided numerous clues towards the function of new molecular complexes with the potential to better understand genomic maintenance processes in hyperthermophilic archaea. Among others, we found new potential partners of the replication clamp and demonstrated that the single strand DNA binding protein, Replication Protein A, enhances the transcription rate, in vitro, of RNA polymerase. This interaction map provides a valuable tool to explore new aspects of genome integrity in Archaea and also potentially in Eucaryotes

    Maintenance génomique chez l'Archaea hyperthermophile Pyrococcus abyssi : découverte de nouvelles interactions physiques et caractérisation fonctionnelle

    No full text
    Archaea are micro-organisms present in all ecosystems, but are majoritary present in extremophilic environments. Hyperthermophilic Archaea, as Pyrococcus abyssi, are permanently exposed at temperature which can increase the rate of spontaneous DNA damage. It is probable that hyperthermophilic Archaea possess efficient molecular mechanism to duplicate, maintain and stabilize their genomes. The aim of this project was to investigate the interaction network involved in the process of DNA replication and DNA repair. The methodological approach consists in the coupling of pull-down with mass spectrometry identification of interacting partners. A preliminary interaction network was identified that was composed of new proteins as well as unsuspected interactions between known components of DNA replication machinery. The main results consist in: (1) the nuclease Pab2263, which interacts with PCNA, is a novel player in DNA metabolism. (2) PCNA is likely part of a macrocomplex with the ubiquitary proteins Mre11 and Rad50 suggesting a role of this complex in the repair of double strand break in connection with a replication fork. (3) Fen1 and DNA primase interact physically and can collaborate in vitro to resolve intermediate step of the base excision repair pathway. These results enhance our understanding of DNA repair process in Archaea.Les Archaea sont des micro-organismes rencontrés dans tous les écosystèmes, mais qui apparaissent comme majoritaires dans les environnements dits extrêmes. Les archaea hyperthermophiles, comme Pyrococcus abyssi sont en permanence exposées à des températures qui peuvent augmenter le taux de dommages de l'ADN, pourtant, le taux de mutations spontanés chez ces micro-organismes est similaire à celui des espèces modèles mésophiles. Il est ainsi probable que les hyperthermophiles possèdent des systèmes particulièrement efficaces pour dupliquer, maintenir et stabiliser leur génome. L'objectif de ce projet était d'explorer le réseau d'interaction impliqué dans les processus de réplication et de réparation de l'ADN. L'approche méthodologique mise en oeuvre a consisté à coupler la capture de partenaires d'interaction par pull-down avec leur identification par spectrométrie de masse. J'ai pu ainsi mettre en évidence, au sein l'extrait cellulaire de P. abyssi, un réseau préliminaire reliant des protéines de la maintenance génomique. Nous avons non seulement mis en évidence de nouvelles protéines impliquées probablement dans des mécanismes de réparation, mais également des nouvelles interactions non suspectées entre des composants déjà caractérisés. Les principaux résultats sont les suivants : (1) La nucléase Pab2263, partenaire du PCNA, est un nouvel acteur du métabolisme de l'ADN. (2) Le PCNA forme un macrocomplexe avec les protéines ubiquitaires Mre11 et Rad50 suggérant un rôle de ce complexe dans la réparation des cassures double brin de l'ADN lors de la réplication. (3) Les protéines Fen1 et l'ADN primase interagissent physiquement et peuvent collaborer in vitro pour résoudre une étape intermédiaire de la voie de réparation par excision de base. Ces résultats enrichissent notre compréhension des processus de réparation de l'ADN chez les archées

    Maintenance génomique chez l'Archaea hyperthermophile Pyrococcus abyssi (découverte de nouvelles interactions physiques et caractérisation fonctionnelle)

    No full text
    Les Archaea sont des micro-organismes rencontrés dans tous les écosystèmes, mais qui apparaissent comme majoritaires dans les environnements dits extrêmes. Les archaea hyperthermophiles, comme Pyrococcus abyssi sont en permanence exposées à des températures qui peuvent augmenter le taux de dommages de l ADN, pourtant, le taux de mutations spontanés chez ces micro-organismes est similaire à celui des espèces modèles mésophiles. Il est ainsi probable que les hyperthermophiles possèdent des systèmes particulièrement efficaces pour dupliquer, maintenir et stabiliser leur génome. L objectif de ce projSt était d explorer le réseau d interaction impliqué dans les processus de réplication et de réparation de l ADN. L approche méthodologique mise en oeuvre à consister à coupler la capture de partenaires d interaction par pull-down avec leur identification par spectrométrie de masse. J ai pu ainsi mettre en évidence, au sein l extrait cellulaire de P. abyssi, un réseau préliminaire reliant des protéines de la maintenance génomique. Nous avons non seulement mis en évidence de nouvelles protéines impliquées probablement dans des mécanismes de réparation, mais également des nouvelles interactions non suspectées entre des composants déjà caractérisés. Les principaux résultats sont les suivants (1) La nucléase Fab2263, partenaire du PCNA, est un nouvel acteur du métabolisme de l ADN. (2) Le PCNA forme un macrocomplexe avec les protéines ubiquitaires Mre11 et Rad5O suggérant un rôle de ce complexe dans la réparation des cassures double brin de l ADN lors de la réplication. (3) Les protéines Fen1 et l ADN primase interagissent physiquement et peuvent collaborer in vitro pour résoudre une tape intermédiaire de la voie de réparation par excision de base. Ces résultats enrichissent notre compréhension des processus de réparation de l ADN chez les archées.Archaea are micro-organisms present in all ecosystems, but are majoritary present in extremophilic environments. Hyperthermophilic Archaea, as Pyrococcus abyssi, are permanently exposed at temperature which can increase the rate of spontaneous DNA damage. It is probable that hyperthermophilic Archaea possess efficient molecular mechanism to duplicate, maintain and stabilize their genomes. The aim of this project was to investigate the interaction network involved in the process of DNA replication and DNA repair. The methodological approach consists in the coupling of pull-down with mass spectrometry identification of interacting partners. A preliminary interaction network was identified that was composed of new proteins as well as unsuspected interactions between known components of DNA replication machinery. The main results consist in: (1) the nuclease Pab2263, which interacts with PCNA, is a novel player in DNA metabolism. (2) PCNA is likely part of a macrocomplex with the ubiquitary proteins Mre11 and Rad5O suggesting a role of this complex in the repair of double strand break in connection with a replication fork. (3) Fenl and DNA primase interact physically and can collaborate in vitro to resolve intermediate step of the base excision repair pathway. These results enhance our understanding of DNA repair process in Archaea.BREST-BU Droit-Sciences-Sports (290192103) / SudocPLOUZANE-Bibl.La Pérouse (290195209) / SudocSudocFranceF

    The Borrelia burgdorferi

    No full text

    Conservation and Role of Electrostatics in Thymidylate Synthase

    No full text
    International audienceConservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome. The electrostatic potential of a protein plays a crucial role in steering ligands to their binding sites, and orienting them correctly for binding 1. In enzymes, the active site electrostatic potential is important for stabilizing the transition state and thereby catalyzing the reaction 2. Therefore, conservation of protein function across a protein family is often accompanied by conservation of the electrostatic potential in the active site region, even though the rest of the protein may lack a conserved electrostatic potential 3,4. Consequently, comparison of protein electrostatic potentials has been employed as a tool to predict protein function and to derive similarities in protein function across protein families 5–7. Optimizing the electrostatic complementarity between a ligand and the binding site of a protein is also an important aspect in drug design 8,9 and may provide a route to gain target selectivity 10

    A Hydrazine–Hydrazone Adamantine Compound Shows Antimycobacterial Activity and Is a Probable Inhibitor of MmpL3

    No full text
    Tuberculosis remains an important cause of morbidity and mortality throughout the world. Notably, an important number of multi drug resistant cases is an increasing concern. This problem points to an urgent need for novel compounds with antimycobacterial properties and to improve existing therapies. Whole-cell-based screening for compounds with activity against Mycobacterium tuberculosis complex strains in the presence of linezolid was performed in this study. A set of 15 bioactive compounds with antimycobacterial activity in vitro were identified with a minimal inhibitory concentration of less than 2 µg/mL. Among them, compound 1 is a small molecule with a chemical structure consisting of an adamantane moiety and a hydrazide–hydrazone moiety. Whole genome sequencing of spontaneous mutants resistant to the compounds suggested compound 1 to be a new inhibitor of MmpL3. This compound binds to the same pocket as other already published MmpL3 inhibitors, without disturbing the proton motive force of M. bovis BCG and M. smegmatis. Compound 1 showed a strong activity against a panel ofclinical strains of M. tuberculosis in vitro. This compound showed no toxicity against mammalian cells and protected Galleria mellonella larvae against M. bovis BCG infection. These results suggest that compound 1 is a promising anti-TB agent with the potential to improve TB treatment in combination with standard TB therapies

    Structure and function of a novel endonuclease acting on branched DNA substrates

    No full text
    We show that Pyrococcus abyssi PAB2263 (dubbed NucS (nuclease for ss DNA) is a novel archaeal endonuclease that interacts with the replication clamp PCNA. Structural determination of P. abyssi NucS revealed a two-domain dumbbell-like structure that in overall does not resemble any known protein structure. Biochemical and structural studies indicate that NucS orthologues use a non-catalytic ssDNA-binding domain to regulate the cleavage activity at another site, thus resulting into the specific cleavage at double-stranded DNA (dsDNA)/ssDNA junctions on branched DNA substrates. Both 3′ and 5′ extremities of the ssDNA can be cleaved at the nuclease channel that is too narrow to accommodate duplex DNA. Altogether, our data suggest that NucS proteins constitute a new family of structure-specific DNA endonucleases that are widely distributed in archaea and in bacteria, including Mycobacterium tuberculosis
    corecore