52 research outputs found

    Investigation of the sugar content in wood hydrolysates with iodometric titration and UPLC-ELSD

    Get PDF
    ArticleAutohydrolysis of birch wood is a mild pretreatment process, which gives a notable yield of sugars – monosaccharides and oligosaccharides – in the aqueous hydrolysate, while a solid lignocellulose fraction can be further processed into other valuable products within a biorefinery concept. In this work two analytical methods – iodometric titration and ultra-high performance liquid chromatography with evaporative light scattering detection (UPLC-ELSD) – have been optimized and compared for the determination of the sugar content in series of birch wood hydrolysates. The results of both methods were consistent and showed that the highest yield of sugars, mostly xylose, was obtained by hydrolysis at 180 °C after 75 min

    Formation of Engineering Specialists at University: Adaptation and Learning Motivation Problems

    Full text link
    During the Fourth Industrial Revolution, the development of society depends on multiple factors, primarily on technologies and the quality of training of modern engineers, including university graduates. The aim of the present study is to elaborate proposals and recommendations for increasing the students' motivation to study at universities and managing problems of their adaptation. This research is based on the following methods: analysis of philosophical, managerial, sociological and pedagogical literature; survey and comparative data analysis. 627 engineering students of the Ural Federal University named after the first President of Russia B. N. Yeltsin (Russia) and 127 students of the Latvia University of Life Sciences and Technologies (Latvia) have been surveyed. The results show that regular research of problems of motivation for learning and adaptation to the future profession at the university is a prerequisite for becoming a highly qualified specialist in the field of engineering. Problem monitoring will contribute to students' adaptation to their future profession as they pursue their curriculum. It has been found that engineering education has different characteristics in various countries. The survey has shown UrFU and LLU students' interest in obtaining a degree in engineering and pursuing the occupations for which they are qualified. At the same time, the role of the university in enhancing motivation and accelerating the adaptation of students should consist in practice-oriented learning, building competencies and personal qualities required in their future profession. © 2021 Latvia University of Life Sciences and Technologies. All rights reserved

    High-Energy Proton Testing of Sensitive Electronics for use on Modular Infrared Molecules and Ices Sensor (MIRMIS) Instrument

    Get PDF
    The Comet Interceptor (CI) mission is ESA\u27s first F class mission, selected in June 2019. This mission consists of three spacecraft: Spacecraft A (main spacecraft), Spacecraft B1 (supplied by the Japanese space agency JAXA), and Spacecraft B2. In this paper, we highlight the Modular Infrared Molecular and Ices Sensor (MIRMIS) instrument, which is integrated into the CI Spacecraft A\u27s scientific payload. In addition to hardware contributions from Finland (VTT Finland) and the UK (University of Oxford), the MIRMIS instrument team includes members from the University of Helsinki and NASA\u27s Goddard Space Flight Centre. MIRMIS covers the spectral range of 0.9 to ~25 μm. This paper presents the preliminary high-proton-energy radiation test results of MIRMIS’ near-infrared detector arraysensitive electronic components. Proton beam testing is performed to estimate Single Event Effects (SEE) on the PCB boards and SEE and Total Non-Ionizing Dose (TNID)/ Displacement Damage (DD) on the detectors. The tests were conducted at the Paul Scherrer Institute (PSI) Proton Irradiation Facility (PIF), Villigen, Switzerland. The levels for the tests were based on the mission requirements for the ESA Comet Interceptor mission: 3 years (at 1 AU- Segment 1) and 2 years (at 0.9 AU- Segment 2). The DD levels from the analysis were equivalent to 1e11 protons/cm2 with an energy of 50 MeV. The electronics are exposed to high-energy protons causing Single Event Effects (SEE) which may induce potentially destructive and non-destructive effects. The test items primarily included the InGaAs image sensors (SCD Cardinal640, standard and low noise), Xilinx Spartan-6 FPGAs (Field Programmable Gate Arrays), and other proximity electronics. The proton energies were varied from 50 to 200 MeV, at fluxes of 106 to 108 particles/cm2/s. No events were observed on the standard Cardinal640 sensor at target fluences between 1.00E+10 to 1.00E+11 particles/cm2. FPGAs did not show any susceptibility to TNID at fluences up to 1.00E+11 (particles/cm2)

    Long-term changes in drought indices in eastern and central Europe

    Get PDF
    This study analyses long-term changes in drought indices (Standardised Precipitation Index—SPI, Standardised Precipitation–Evapotranspiration Index—SPEI) at 1 and 3 months scales at 182 stations in 11 central and eastern European countries during 1949–2018. For comparative purposes, the necessary atmospheric evaporative demand (AED) to obtain SPEI was calculated using two methods, Hargreaves-Samani (SPEIH) and Penman-Monteith (SPEIP). The results show some relevant changes and tendencies in the drought indices. Statistically significant increase in SPI and SPEI during the cold season (November–March), reflecting precipitation increase, was found in the northern part of the study region, in Estonia, Latvia, Lithuania, northern Belarus and northern Poland. In the rest of study domain, a weak and mostly insignificant decrease prevailed in winter. Summer season (June–August) is characterized by changes in the opposite sign. An increase was observed in the north, while a clear decrease in SPEI, reflecting a drying trend, was typical for the southern regions: the Czech Republic, Slovakia, Hungary, Romania, Moldova and southern Poland. A general drying tendency revealed also in April, which was statistically significant over a wide area in the Czech Republic and Poland. Increasing trends in SPI and SPEI for September and October were detected in Romania, Moldova and Hungary. The use of SPEI instead of SPI generally enhances drying trends

    Lipid rafts are essential for release of phosphatidylserine-exposing extracellular vesicles from platelets.

    Get PDF
    Platelets protect the vascular system during damage or inflammation, but platelet activation can result in pathological thrombosis. Activated platelets release a variety of extracellular vesicles (EVs). EVs shed from the plasma membrane often expose phosphatidylserine (PS). These EVs are pro-thrombotic and increased in number in many cardiovascular and metabolic diseases. The mechanisms by which PS-exposing EVs are shed from activated platelets are not well characterised. Cholesterol-rich lipid rafts provide a platform for coordinating signalling through receptors and Ca2+ channels in platelets. We show that cholesterol depletion with methyl-β-cyclodextrin or sequestration with filipin prevented the Ca2+-triggered release of PS-exposing EVs. Although calpain activity was required for release of PS-exposing, calpain-dependent cleavage of talin was not affected by cholesterol depletion. P2Y12 and TPα, receptors for ADP and thromboxane A2, respectively, have been reported to be in platelet lipid rafts. However, the P2Y12 antagonist, AR-C69931MX, or the cyclooxygenase inhibitor, aspirin, had no effect on A23187-induced release of PS-exposing EVs. Together, these data show that lipid rafts are required for release of PS-exposing EVs from platelets.Isaac Newton Trust/ Wellcome Trust ISSF/University of Cambridge Joint Research Grant British Heart Foundation grant SP/15/7/3156

    Thrive:enable your personal creativity and thrive

    No full text

    Daily measurement of organic compounds in ambient particulate matter in Augsburg, Germany: new aspects on aerosol sources and aerosol related health effects

    No full text
    Several epidemiological studies have shown that in the human population ambient particulate matter (PM) is associated with adverse health effects. Little is known, however, about the relative effects of aerosol constituents. Since 2002, diurnal samples of ambient PM2.5 were analysed by automated methods for the quantification of particle-associated organic compounds (POC). Data on chemical composition have been investigated in epidemiological and biological effect studies. As a result of these studies, the associations found between PAH concentration and symptoms of myocardial infarction survivors suggest a major influence of combustion sources on cardiovascular health effects. The correlations found between formation of reactive oxygen species and the presence of specific organic compounds suggests an important influence of biomass combustion particles in PM2.5-associated oxidative stress
    corecore