51 research outputs found

    Intestinal and enthesis innate immunity in early axial spondyloarthropathy

    Get PDF
    Axial SpA (axSpA), encompassing AS, is a multifactorial disease that localizes to sites of high spinal biomechanical stress. Much has been written on T cells and adaptive immunity in axSpA, which is understandable given the very strong HLA-B27 disease association. Extra-axial disease characteristically involves the anterior uveal tract, aortic root, lung apex and terminal ileum. Under recent classification, axSpA is classified as an intermediate between autoimmunity and autoinflammatory disease, with the latter term being synonymous with innate immune dysregulation. The purpose of this review is to evaluate the ‘danger signals’ from both the exogenous intestinal microbiotal adjuvants or pathogen-associated molecular patterns that access the circulation and endogenously derived damaged self-tissue or damage-associated molecular patterns derived from entheses and other sites of high biomechanical stress or damage that may serve as key drivers of axSpA onset, evolution, disease flares and eventual outcomes

    COVID-19 Vasculitis and vasculopathy-Distinct immunopathology emerging from the close juxtaposition of Type II Pneumocytes and Pulmonary Endothelial Cells

    Get PDF
    The SARS-CoV-2 virus ACE-2 receptor utilization for cellular entry and the defined ACE-2 receptor role in cardiovascular medicine hinted at dysregulated endothelial function or even direct viral endotheliitis as the key driver of severe COVID-19 vascular immunopathology including reports of vasculitis. In this article, we critically review COVID-19 immunopathology from the vasculitis perspective and highlight the non-infectious nature of vascular endothelial involvement in severe COVID-19. Whilst COVID-19 lung disease pathological changes included juxta-capillary and vascular macrophage and lymphocytic infiltration typical of vasculitis, we review the evidence reflecting that such “vasculitis” reflects an extension of pneumonic inflammatory pathology to encompass these thin-walled vessels. Definitive, extrapulmonary clinically discernible vasculitis including cutaneous and cardiac vasculitis also emerged- namely a dysregulated interferon expression or “COVID toes” and an ill-defined systemic Kawasaki-like disease. These two latter genuine vasculitis pathologies were not associated with severe COVID-19 pneumonia. This was distinct from cutaneous vasculitis in severe COVID-19 that demonstrated pauci-immune infiltrates and prominent immunothrombosis that appears to represent a novel immunothrombotic vasculitis mimic contributed to by RNAaemia or potentially diffuse pulmonary venous tree thrombosis with systemic embolization with small arteriolar territory occlusion, although the latter remains unproven. Herein, we also performed a systematic literature review of COVID-19 vasculitis and reports of post-SARS-CoV-2 vaccination related vasculitis with respect to the commonly classified pre-COVID vasculitis groupings. Across the vasculitis spectrum, we noted that Goodpasture’s syndrome was rarely linked to natural SARS-CoV-2 infection but not vaccines. Both the genuine vasculitis in the COVID-19 era and the proposed vasculitis mimic should advance the understanding of both pulmonary and systemic vascular immunopathology

    The IL-23p19/EBI3 heterodimeric cytokine termed IL-39 remains a theoretical cytokine in man

    Get PDF
    Objective: The heterodimeric IL-12 family member cytokines including, IL-12, IL-23, IL-27, and IL-35 and have multiple roles in regulating innate and adaptive immunity with crucial functions in inflammatory disorders such as psoriasis. Chain pairing promiscuity is a feature of the IL-12 family. Recently, based on murine data, a new family member, IL-39, was proposed, consisting of IL23p19 (shared with IL-23) and EBI3 (shared with IL-27 and IL-35). IL-39 has subsequently been implicated in experimental murine lupus. Given the success of IL-23p19 therapeutic targeting in diseases including psoriasis, it is of great interest to confirm the presence of IL-39 in man. Human IL-39 is yet to be either detected or expressed, which has halted research in this area. Methods: Using a disulphide-linked human chimera protein composing of IL-23p19 and EBI3 human chains, we stimulated human leukocytes, and analysed cytokine secretion and STAT3 phosphorylation. Results and Conclusion: We report that this cytokine shows no activity in human cells. IL-39 chimera protein failed to induce either IL-6, IL-8, TNF, or IL-17A from leukocytes or STAT3 phosphorylation and thus, remains a ‘theoretical cytokine' in humans

    The Impact of Intermittent Fasting (Ramadan Fasting) on Psoriatic Arthritis Disease Activity, Enthesitis, and Dactylitis: A Multicentre Study

    Get PDF
    Intermittent circadian fasting, namely Ramadan, is a common worldwide practice. Such fasting has a positive impact on psoriasis, but no data exist on its role in psoriatic arthritis (PsA)—a disease that is clearly linked to body mass index. We enrolled 37 patients (23 females and 14 males) with a mean age 43.32 ± 7.81 and they fasted for 17 h for one month in 2016. The baseline PsA characteristics were collected and 12 (32.4%) patients had peripheral arthritis, 13 (35.1%) had axial involvement, 24 (64.9%) had enthesitis, and 13 (35.1%) had dactylitis. Three patients (8.1%) were treated with methotrexate, 28 (75.7%) with TNF-α blockers, and 6 (16.2%) with IL-17 blockers. After a month of intermittent fasting, C-reactive protein (CRP) levels decreased from 14.08 ± 4.65 to 12.16 ± 4.46 (p < 0.0001), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) decreased from 2.83 ± 1.03 to 2.08 ± 0.67 (p = 0.0078), Psoriasis Area Severity Index (PASI) decreased from 7.46 ± 2.43 to 5.86 ± 2.37 (p < 0.0001), and Disease Activity index for PSoriatic Arthritis (DAPSA) decreased from 28.11 ± 4.51 to 25.76 ± 4.48 (p < 0.0001). Similarly, enthesitis improved after fasting, with Leeds Enthesitis Index (LEI) decreasing from 2.25 ± 1.11 to 1.71 ± 0.86 (p < 0.0001) and dactylitis severity score (DSS) decreasing from 9.92 ± 2.93 to 8.54 ± 2.79 (p = 0.0001). Fasting was found to be a predictor of a decrease in PsA disease activity scores (DAPSA, BASDAI, LEI, DSS) even after adjustment for weight loss. IL-17 therapy was found to be an independent predictor of decreases in LEI after fasting. These preliminary data may support the use of chronomedicine in the context of rheumatic diseases, namely PsA. Further studies are needed to support our findings

    Neutrophilic Dermatoses and Their Implication in Pathophysiology of Asthma and Other Respiratory Comorbidities: A Narrative Review

    Get PDF
    Neutrophilic dermatoses (ND) are a polymorphous group of noncontagious dermatological disorders that share the common histological feature of a sterile cutaneous infiltration of mature neutrophils. Clinical manifestations can vary from nodules, pustules, and bulla to erosions and ulcerations. The etiopathogenesis of neutrophilic dermatoses has continuously evolved. Accumulating genetic, clinical, and histological evidence point to NDs being classified in the spectrum of autoinflammatory conditions. However, unlike the monogenic autoinflammatory syndromes where a clear multiple change in the inflammasome structure/function is demonstrated, NDs display several proinflammatory abnormalities, mainly driven by IL-1, IL-17, and tumor necrosis factor-alpha (TNF-a). Additionally, because of the frequent association with extracutaneous manifestations where neutrophils seem to play a crucial role, it was plausible also to consider NDs as a cutaneous presentation of a systemic neutrophilic condition. Neutrophilic dermatoses are more frequently recognized in association with respiratory disorders than by chance alone. The combination of the two, particularly in the context of their overlapping immune responses mediated primarily by neutrophils, raises the likelihood of a common neutrophilic systemic disease or an aberrant innate immunity disorder. Associated respiratory conditions can serve as a trigger or may develop or be exacerbated secondary to the uncontrolled skin disorder. Physicians should be aware of the possible pulmonary comorbidities and apply this knowledge in the three steps of patients' management, work-up, diagnosis, and treatment. In this review, we attempt to unravel the pathophysiological mechanisms of this association and also present some evidence for the role of targeted therapy in the treatment of both conditions

    Evidence that tissue resident human enthesis γδ T-cells can produce IL-17A independently of IL-23R transcript expression

    No full text
    Objectives: Murine models of interleukin (IL)-23-driven spondyloarthritis (SpA) have demonstrated entheseal accumulation of Î 3Î T-cells which were responsible for the majority of local IL-17A production. However, IL-23 blockers are ineffective in axial inflammation in man. This study investigated Î 3Î T-cell subsets in the normal human enthesis to explore the biology of the IL-23/17 axis. Methods: Human spinous processes entheseal soft tissue (EST) and peri-entheseal bone (PEB) were harvested during elective orthopaedic procedures. Entheseal Î 3Î T-cells were evaluated using immunohistochemistry and isolated and characterised using flow cytometry. RNA was isolated from Î 3Î T-cell subsets and analysed by qPCR. Entheseal Î 3Î T-cells were stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin, anti-CD3/28 or IL-23 and IL-17A production was measured by high-sensitivity ELISA and qPCR. Results: Entheseal Î 3Î T-cells were confirmed immunohistochemically with VÎ 1 and VÎ 2 subsets that are cytometrically defined. Transcript profiles of both cell populations suggested tissue residency and immunomodulatory status. Entheseal VÎ 2 cells expressed high relative abundance of IL-23/17-associated transcripts including IL-23R, RORC and CCR6, whereas the VÎ 1 subset almost completely lacked detectable IL-23R transcript. Following PMA stimulation IL-17A was detectable in both VÎ 1 and VÎ 2 subsets, and following CD3/CD28 stimulation both subsets showed IL-17A and IL-17F transcripts with neither transcript being detectable in the VÎ 1 subset following IL-23 stimulation. Conclusion: Spinal entheseal VÎ 1 and VÎ 2 subsets are tissue resident cells with inducible IL-17A production with evidence that the VÎ 1 subset does so independently of IL-23R expression

    Identification of myeloid cells in the human enthesis as the main source of local IL-23 production.

    No full text
    Objective We investigated whether the normal human spinal enthesis contained resident myeloid cell populations, capable of producing pivotal proinflammatory cytokines including tumour necrosis factor (TNF) and interleukin (IL)-23 and determined whether these could be modified by PDE4 inhibition. Methods Normal human enthesis soft tissue (ST) and adjacent perientheseal bone (PEB) (n=15) were evaluated using immunohistochemistry (IHC), digested for myeloid cell phenotyping, sorted and stimulated with different adjuvants (lipopolysaccharide and mannan). Stimulated enthesis fractions were analysed for inducible production of spondyloarthropathy disease-relevant mediators (IL-23 full protein, TNF, IL-1β and CCL20). Myeloid populations were also compared with matched blood populations for further mRNA analysis and the effect of PDE4 inhibition was assessed. Results A myeloid cell population (CD45+ HLADR+ CD14+ CD11c+) phenotype was isolated from both the ST and adjacent PEB and termed ‘CD14+ myeloid cells’ with tissue localisation confirmed by CD14+ IHC. The CD14− fraction contained a CD123+ HLADR+ CD11c− cell population (plasmacytoid dendritic cells). The CD14+ population was the dominant entheseal producer of IL-23, IL-1β, TNF and CCL20. IL-23 and TNF from the CD14+ population could be downregulated by a PDE4I and other agents (histamine and 8-Bromo-cAMP) which elevate cAMP. Entheseal CD14+ cells had a broadly similar gene expression profile to the corresponding CD14+ population from matched blood but showed significantly lower CCR2 gene expression. Conclusions The human enthesis contains a CD14+ myeloid population that produces most of the inducible IL-23, IL-1β, TNF and CCL20. This population has similar gene expression profile to the matched blood CD14+ population
    corecore