21 research outputs found

    Hepatitis delta virus testing, epidemiology and management: A multicentre cross-sectional study of patients in London

    Get PDF
    AbstractBackgroundHepatitis delta virus (HDV) testing is recommended for all patients with hepatitis B virus (HBV) infection. HDV infection is associated with severe liver disease and interferon is the only available treatment.ObjectivesTo determine the rate of anti-HDV antibody testing in HBV patients; and to describe the epidemiology, clinical characteristics and management of HDV-infected patients at four hospitals in London.Study designThe anti-HDV testing rate was estimated by reviewing clinical and laboratory data. Cross-sectional data collection identified HDV-infected patients who had attended the study centres between 2005 and 2012.ResultsAt a centre with clinic-led anti-HDV testing, 40% (67/168) of HBV patients were tested. Recently diagnosed HBV patients were more likely to be screened than those under long-term follow-up (62% vs 36%, P=0.01). At a centre with reflex laboratory testing, 99.4% (3543/3563) of first hepatitis B surface antigen positive samples were tested for anti-HDV. Across the four study centres there were 55 HDV-infected patients, of whom 50 (91%) had immigrated to the UK and 27 (49%) had evidence of cirrhosis. 31 patients received interferon therapy for HDV with an end of treatment virological response observed in 10 (32%).ConclusionsThe anti-HDV testing rate was low in a centre with clinic-led testing, but could not be evaluated in all centres. The HDV-infected patients were of diverse ethnicity, with extensive histological evidence of liver disease and poor therapeutic responses. Future recommendations include reflex laboratory testing algorithms and a prospective cohort study to optimise the investigation and management of these patients

    A large population sample of African HIV genomes from the 1980s reveals a reduction in subtype D over time associated with propensity for CXCR4 tropism

    Get PDF
    We present 109 near full-length HIV genomes amplified from blood serum samples obtained during early 1986 from across Uganda, which to our knowledge is the earliest and largest population sample from the initial phase of the HIV epidemic in Africa. Consensus sequences were made from paired-end Illumina reads with a target-capture approach to amplify HIV material following poor success with standard approaches. In comparisons with a smaller 'intermediate' genome dataset from 1998 to 1999 and a 'modern' genome dataset from 2007 to 2016, the proportion of subtype D was significantly higher initially, dropping from 67% (73/109), to 57% (26/46) to 17% (82/465) respectively (p < 0.0001). Subtype D has previously been shown to have a faster rate of disease progression than other subtypes in East African population studies, and to have a higher propensity to use the CXCR4 co-receptor ("X4 tropism"); associated with a decrease in time to AIDS. Here we find significant differences in predicted tropism between A1 and D subtypes in all three sample periods considered, which is particularly striking the 1986 sample: 66% (53/80) of subtype D env sequences were predicted to be X4 tropic compared with none of the 24 subtype A1. We also analysed the frequency of subtype in the envelope region of inter-subtype recombinants, and found that subtype A1 is over-represented in env, suggesting recombination and selection have acted to remove subtype D env from circulation. The reduction of subtype D frequency over three decades therefore appears to be a result of selective pressure against X4 tropism and its higher virulence. Lastly, we find a subtype D specific codon deletion at position 24 of the V3 loop, which may explain the higher propensity for subtype D to utilise X4 tropism

    Early and Highly Suppressive ART are Main Factors Associated with Low Viral Reservoir in European Perinatally HIV Infected Children

    Get PDF
    Abstract BACKGROUND: Future strategies aiming to achieve HIV-1 remission are likely to target individuals with small reservoir size. SETTING: We retrospectively investigated factors associated with HIV-1 DNA levels in European, perinatally HIV-infected children starting ART <6 months of age. METHODS: Total HIV-1 DNA was measured from 51 long-term suppressed children 6.3 years (median) after initial viral suppression. Factors associated with log10 total HIV-1 DNA were analyzed using linear regression. RESULTS: At ART initiation, children were aged median [IQR] 2.3 [1.2,4.1] months, CD4% 37 [24,45] %, CD8% 28 [18,36] %, log10 plasma viral load (VL) 5.4 [4.4,5.9] copies/ml. Time to viral suppression was 7.98 [4.6,19.3] months. Following suppression, 13 (25%) children had suboptimal response [ 652 consecutive VL50-400 followed by VL<50] and/or experienced periods of virological failure [ 652 consecutive VL 65400 followed by VL<50]. Median total HIV-1 DNA was 43 [6,195] copies/10 PBMC.Younger age at therapy initiation was associated with lower total HIV-1 DNA (adjusted coefficient [AC] 0.12 per month older, p=0.0091), with a month increase in age at ART start being associated with a 13% increase in HIV DNA. Similarly, a higher proportion of time spent virally suppressed (AC 0.10 per 10% higher, p=0.0022) and absence of viral failure/suboptimal response (AC 0.34 for those with fail/ suboptimal response, p=0.0483) were associated with lower total HIV-1 DNA. CONCLUSION: Early ART initiation and a higher proportion of time suppressed are linked with lower total HIV-1 DNA. Early ART start and improving adherence in perinatally HIV-1 infected children minimize the size of viral reservoir.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal

    Nosocomial transmission of influenza: A retrospective cross-sectional study using next generation sequencing at a hospital in England (2012-2014).

    Get PDF
    BACKGROUND: The extent of transmission of influenza in hospital settings is poorly understood. Next generation sequencing may improve this by providing information on the genetic relatedness of viral strains. OBJECTIVES: We aimed to apply next generation sequencing to describe transmission in hospital and compare with methods based on routinely-collected data. METHODS: All influenza samples taken through routine care from patients at University College London Hospitals NHS Foundation Trust (September 2012 to March 2014) were included. We conducted Illumina sequencing and identified genetic clusters. We compared nosocomial transmission estimates defined using classical methods (based on time from admission to sample) and genetic clustering. We identified pairs of cases with space-time links and assessed genetic relatedness. RESULTS: We sequenced influenza sampled from 214 patients. There were 180 unique genetic strains, 16 (8.8%) of which seeded a new transmission chain. Nosocomial transmission was indicated for 32 (15.0%) cases using the classical definition and 34 (15.8%) based on genetic clustering. Of the 50 patients in a genetic cluster, 11 (22.0%) had known space-time links with other cases in the same cluster. Genetic distances between pairs of cases with space-time links were lower than for pairs without spatial links (P < .001). CONCLUSIONS: Genetic data confirmed that nosocomial transmission contributes significantly to the hospital burden of influenza and elucidated transmission chains. Prospective next generation sequencing could support outbreak investigations and monitor the impact of infection and control measures

    Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals

    Get PDF
    HIV-1 infected patients who acquire HCV infection have higher rates of chronicity and liver disease progression than patients with HCV mono-infection. Understanding early events in this pathogenic process is important. We applied single genome sequencing of the E1 to NS3 regions and viral pseudotype neutralization assays to explore the consequences of viral quasispecies evolution from pre-seroconversion to chronicity in four co-infected individuals (mean follow up 566 days). We observed that one to three founder viruses were transmitted. Relatively low viral sequence diversity, possibly related to an impaired immune response, due to HIV infection was observed in three patients. However, the fourth patient, after an early purifying selection displayed increasing E2 sequence evolution, possibly related to being on suppressive antiretroviral therapy. Viral pseudotypes generated from HCV variants showed relative resistance to neutralization by autologous plasma but not to plasma collected from later time points, confirming ongoing virus escape from antibody neutralization

    Proof-of-Principle for Immune Control of Global HIV-1 Reactivation In Vivo

    Get PDF
    Background. Emerging data relating to human immunodeficiency virus type 1 (HIV-1) cure suggest that vaccination to stimulate the host immune response, particularly cytotoxic cells, may be critical to clearing of reactivated HIV-1–infected cells. However, evidence for this approach in humans is lacking, and parameters required for a vaccine are unknown because opportunities to study HIV-1 reactivation are rare

    A Phylogenetic Analysis of Human Immunodeficiency Virus Type 1 Sequences in Kiev: Findings Among Key Populations

    Get PDF
    Background: The human immunodeficiency virus (HIV) epidemic in Ukraine has been driven by a rapid rise among people who inject drugs, but recent studies have shown an increase through sexual transmission. Methods: Protease and reverse transcriptase sequences from 876 new HIV diagnoses (April 2013–March 2015) in Kiev were linked to demographic data. We constructed phylogenetic trees for 794 subtype A1 and 64 subtype B sequences and identified factors associated with transmission clustering. Clusters were defined as ≥2 sequences, ≥80% local branch support, and maximum genetic distance of all sequence pairs in the cluster ≤2.5%. Recent infection was determined through the limiting antigen avidity enzyme immunoassay. Sequences were analyzed for transmitted drug resistance mutations. Results Thirty percent of subtype A1 and 66% of subtype B sequences clustered. Large clusters (maximum 11 sequences) contained mixed risk groups. In univariate analysis, clustering was significantly associated with subtype B compared to A1 (odds ratio [OR], 4.38 [95% confidence interval {CI}, 2.56–7.50]); risk group (OR, 5.65 [95% CI, 3.27–9.75]) for men who have sex with men compared to heterosexual males; recent, compared to long-standing, infection (OR, 2.72 [95% CI, 1.64–4.52]); reported sex work contact (OR, 1.93 [95% CI, 1.07–3.47]); and younger age groups compared with age ≥36 years (OR, 1.83 [95% CI, 1.10–3.05] for age ≤25 years). Females were associated with lower odds of clustering than heterosexual males (OR, 0.49 [95% CI, .31–.77]). In multivariate analysis, risk group, subtype, and age group were independently associated with clustering (P < .001, P = .007, and P = .033, respectively). Eighteen sequences (2.1%) indicated evidence of transmitted drug resistance. Conclusions Our findings suggest high levels of transmission and bridging between risk groups

    Dynamics of raltegravir resistance profile in an HIV type 2-infected patient.

    No full text
    The evolutionary dynamics of RAL resistance in the HIV-2 virus were examined through population and clonal sequence analysis of the IN from baseline, during treatment, and after stopping RAL therapy. The treatment failure of an RAL regimen in the HIV-2 patient studied was associated with the emergence of mutations via the N155H resistance pathway and subsequent switching to the Y143C mutational route. This study has also identified four novel secondary mutations, Q91R, S147G, A153G, and M183I, not previously reported in HIV-1 patients failing RAL therapy. Resistant variants involving the Y143C pathway were noted to have persisted beyond 4 weeks following the cessation of RAL therapy. All resistance-associated mutations were lost at 20 weeks after stopping RAL therapy. Our findings provide evidence supporting the supposition that substantial cross-resistance between strand transfer IN-Is is likely in HIV-2 as shown in HIV-1

    Universal amplification, next-generation sequencing, and assembly of HIV-1 genomes

    No full text
    Whole HIV-1 genome sequences are pivotal for large-scale studies of inter- and intrahost evolution, including the acquisition of drug resistance mutations. The ability to rapidly and cost-effectively generate large numbers of HIV-1 genome sequences from different populations and geographical locations and determine the effect of minority genetic variants is, however, a limiting factor. Next-generation sequencing promises to bridge this gap but is hindered by the lack of methods for the enrichment of virus genomes across the phylogenetic breadth of HIV-1 and methods for the robust assembly of the virus genomes from short-read data. Here we report a method for the amplification, next-generation sequencing, and unbiased de novo assembly of HIV-1 genomes of groups M, N, and O, as well as recombinants, that does not require prior knowledge of the sequence or subtype. A sensitivity of at least 3,000 copies/ml was determined by using plasma virus samples of known copy numbers. We applied our novel method to compare the genome diversities of HIV-1 groups, subtypes, and genes. The highest level of diversity was found in the env, nef, vpr, tat, and rev genes and parts of the gag gene. Furthermore, we used our method to investigate mutations associated with HIV-1 drug resistance in clinical samples at the level of the complete genome. Drug resistance mutations were detected as both major variant and minor species. In conclusion, we demonstrate the feasibility of our method for large-scale HIV-1 genome sequencing. This will enable the phylogenetic and phylodynamic resolution of the ongoing pandemic and efficient monitoring of complex HIV-1 drug resistance genotypes
    corecore