71 research outputs found

    Neutron scattering search for static magnetism in oxygen ordered YBa2Cu3O6.5

    Full text link
    We present elastic and inelastic neutron scattering results on highly oxygen ordered YBa2Cu3O6.5 ortho-II. We find no evidence for the presence of ordered magnetic moments to a sensitivity of 0.003 Bohr magnetons, an order of magnitude smaller than has been suggested in theories of orbital or d-density-wave (DDW) currents. The absence of sharp elastic peaks, shows that the d-density-wave phase is not present, at least for the superconductor with the doping of 6.5 and the ordered ortho-II structure. We cannot exclude the possibility that a broad peak may exist with extremely short-range DDW correlations. For less ordered or more doped crystals it is possible that disorder may lead to static magnetism. We have also searched for the large normal state spin gap that is predicted to exist in an ordered DDW phase. Instead of a gap we find that the Q-correlated spin susceptibility persists to the lowest energies studied, 6 meV. Our results are compatible with the coexistence of superconductivity with orbital currents, but only if they are dynamic, and exclude a sharp phase transition to an ordered d-density-wave phase.Comment: 6 pages 4 figures RevTex Submitted to Phys Rev B January 23, 200

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∌1 m and ∌1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≄500 ÎŒm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 ÎŒm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Antioxidant therapeutic advances in COPD

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is associated with a high incidence of morbidity and mortality. Cigarette smoke-induced oxidative stress is intimately associated with the progression and exacerbation of COPD and therefore targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to have beneficial outcome in the treatment of COPD. Among the various antioxidants tried so far, thiol antioxidants and mucolytic agents, such as glutathione, N-acetyl-L-cysteine, N-acystelyn, erdosteine, fudosteine and carbocysteine; Nrf2 activators; and dietary polyphenols (curcumin, resveratrol, and green tea catechins/quercetin) have been reported to increase intracellular thiol status along with induction of GSH biosynthesis. Such an elevation in the thiol status in turn leads to detoxification of free radicals and oxidants as well as inhibition of ongoing inflammatory responses. In addition, specific spin traps, such as α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a SOD mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo in the lung. Since a variety of oxidants, free radicals and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic administration of multiple antioxidants and mucolytics will be effective in management of COPD. However, a successful outcome will critically depend upon the choice of antioxidant therapy for a particular clinical phenotype of COPD, whose pathophysiology should be first properly understood. This article will review the various approaches adopted to enhance lung antioxidant levels, antioxidant therapeutic advances and recent past clinical trials of antioxidant compounds in COPD

    LOCAL STRUCTURE OF ICOSAHEDRAL AND AMORPHOUS Al-Mn ALLOYS

    No full text
    Nous comparons les mesures EXAFS au seuil d'absorption K du manganése entre Al-Mn icosahédrique (i), amorphe (a) et cristallin (c). Les phases i et a présentent des distributions de proches voisins Mn-Al, trés similaires. Ces distributions sont trouveés plus larges et plus asymétriques que dans la phase C. L'asymétrie de la phase a est quelque peu moins prononceé que celle associeé à la phase i. Toutes les phases ont environ 10 atomes Al premiers voisins des atomes Mn.EXAFS measurements on the Mn K edge of icosahedral (i), amorphous (a), and crystalline (c) Al-Mn are compared. It is found that the i- and a-phases have very similar Mn-Al near neighbor distributions, both of which are broader and more asymmetric than that for the c-phase. The asymmetry for the a-phase is somewhat less pronounced than that for the i-phase. All phases have approximately 10 Al first neighbors to the Mn atoms

    Mapping Medusae Fossae Formation materials in the southern highlands of Mars

    No full text
    The Medusae Fossae Formation (MFF) is an extensive deposit (2.2 x 106km2, Bradley, B.A., Sakimoto, S.E.H., Frey, H., Zimbelman, J.R. [2002]. J. Geophys. Res. 107, 5058) of wind-eroded material of widely debated origin, which unconformably overlies a considerable area of the crustal dichotomy boundary on Mars. The MFF shows a variety of layering patterns, erosional styles and channel-like forms and has been mapped into five main outcrops and three geological members according to exposure and stratigraphy (Scott, D.H., Tanaka, K.L., 1986. USGS Map I-1802-A; Greeley, R., Guest, J.E., 1987. Map I-1802-B; Zimbelman, J.R., Crown, D., Jenson, D., 1996. Lunar Planet. Sci. XXVII. Abstract #1748.). Away from the three main lobes are numerous outliers of MFF materials. These have mainly been reported in the northern lowlands regions (Keszthelyi, L., Jaeger, W.L., and HiRISE team, 2008. Lunar Planet. Sci. XXXIX. Abstract #2420.) but few studies have examined the possibility of MFF outliers on high ground south of the dichotomy boundary. We have searched Mars Orbiter Camera Narrow Angle (MOC NA) images for outliers in this region. Our observations show that there are many MFF outliers on the southern highlands. The characteristics of the outliers indicate materials which overlie the underlying terrain for they appear widely in dips, craters and topographic lows. The surfaces are typified by yardang fields and have a similar patchy and discontinuous nature to materials of the upper member of the MFF. Most have consistent lineation orientations across the wider area which match the dominant orientation of yardangs in the main MFF outcrops. Furthermore, elevation data shows that the maximum, minimum and mean elevations of these newly discovered outliers are closest to those of the upper member of the MFF. We therefore conclude that these deposits are MFF outliers and that they probably represent remnant upper member material. We suggest that there might be two possible explanations for these outliers: (1) the MFF had a much greater pre-erosional extent than previously estimated, or (2) materials from the main outcrops were eroded and then blown south to accrue in the highland areas, where they were subsequently reworked. We suggest that the topography of the region favors the first option. We outline an ‘‘overflowing” layer-cake deposition model, in which layers of sediment stacked up against the dichotomy boundary until they reached the topographic level of the highlands. Further materials (that went onto become upper-member MFF material and outliers) were then deposited across a wider area, including south of the dichotomy boundary. Severe erosion subsequently removed much of this material

    Brazilian Analog For Ancient Marine Environments On Mars

    No full text
    [No abstract available]8936329330Bibring, J., Mars surface diversity as revealed by the OMEGA/Mars Express observations (2005) Science, 307, pp. 1576-1581Christensen, P.R., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer. Evidence for near-surface water (2000) J. Geophys. Res, 105, pp. 9623-9642Connerney, J.E.P., Magnetic lineations in the ancient crust of Mars (1999) Science, 284, pp. 794-798Crowley, J.K., Spectral diversity of terrestrial banded iron formations and associated rocks: Implications for Mars remote sensing (2008) Lunar Planet Sci, 39, p. 1263Dalstra, H., Guedes, S., Giant hydrothermal hematite deposits with Mg-Fe metasomatism: A comparison of the Carajas, Hamersley, and other iron ores (2004) Econ. Geol, 99, pp. 1793-1800Fallacaro, A., Calvin, W.M., Spectral properties of Lake Superior banded iron formation: Application to Martian hematite deposits (2006) Astrobiology, 6, pp. 563-580Klein, C., Some Precambrian banded-iron formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin (2005) Am. Mineral, 90, pp. 1473-1499Klein, C., Ladeira, E.A., Petrography and geochemistry of the least altered banded iron-formation of the Archean Carajas Formation, northern Brazil (2002) Econ. Geol, 97, pp. 643-651Squyres, S.W., In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars (2004) Science, 306, pp. 1709-1714Trendall, A.F., The significance of iron-formation in the Precambrian stratigraphic record (2002) Spec. Publ. Int. Assoc. Sedimentol, 33, pp. 33-66Trendall, A.F., Basei, M.A.S., de Laeter, J.R., Nelson, D.R., Ion microprobe zircon, U-Pb results from the Carajas area of the Amazon craton (1998) J. S. Am. Earth Sci, 11, pp. 265-27
    • 

    corecore