1,561 research outputs found
Correlation Between Student Collaboration Network Centrality and Academic Performance
We compute nodal centrality measures on the collaboration networks of
students enrolled in three upper-division physics courses, usually taken
sequentially, at the Colorado School of Mines. These are complex networks in
which links between students indicate assistance with homework. The courses
included in the study are intermediate Classical Mechanics, introductory
Quantum Mechanics, and intermediate Electromagnetism. By correlating these
nodal centrality measures with students' scores on homework and exams, we find
four centrality measures that correlate significantly with students' homework
scores in all three courses: in-strength, out-strength, closeness centrality,
and harmonic centrality. These correlations suggest that students who not only
collaborate often, but also collaborate significantly with many different
people tend to achieve higher grades. Centrality measures between simultaneous
collaboration networks (analytical vs. numerical homework collaboration)
composed of the same students also correlate with each other, suggesting that
students' collaboration strategies remain relatively stable when presented with
homework assignments targeting different skills. Additionally, we correlate
centrality measures between collaboration networks from different courses and
find that the four centrality measures with the strongest relationship to
students' homework scores are also the most stable measures across networks
involving different courses. Correlations of centrality measures with exam
scores were generally smaller than the correlations with homework scores,
though this finding varied across courses.Comment: 10 pages, 4 figures, submitted to Phys. Rev. PE
Language difficulties in first year Science
A key goal of the study entitled ‘A cross-disciplinary approach to language support for first year students in the science disciplines’, funded by the Carrick Institute for Learning and Teaching in Higher Education, is to examine the role of language in the learning of science by first-year university students. The disciplines involved are Physics, Chemistry and Biology. This national project also aims to transfer active learning skills, which are widely used in language teaching, to the teaching of science in first year. The paper discusses the background to the study, reports on some of the preliminary results on the language difficulties faced by first year student cohorts in science from data collected in 2008, and describes the framework we have established for the organization and delivery of first year science courses to be implemented in semester one 2009
Embedding in-discipline language support for first year students in the sciences
This paper reports on a project which aims at addressing the need to cater for the language needs of a diverse student body (both domestic and international student body) by embedding strategic approaches to learning and teaching in first year sciences in tertiary education. These strategies consist of active learning skills which are widely used in language learning. The disciplines covered by the project are Biology, Chemistry and Physics and involves the University of Canberra (UC), University of Sydney (USyd), University of Tasmania (UTAS), University of Technology, Sydney (UTS) and University of Newcastle (Newcastle) in Australia. This project is funded by the Australian Learning and Teaching Council (ALTC). The paper discusses the background to the study and reports on results on the language difficulties faced by first year science student cohorts from data collected in 2008 as well as qualitative data was also collected on 2008 students’ attitudes towards online science learning. It will also report on the results on the implementation of the learning strategies at UTS and UTAS in Physics and Chemistry disciplines in 2009. Keywords: First year science teaching, role of language in science teaching, active learning skill
Dual Adaptation and Adaptive Generalization of the Human Vestibulo-Ocular Reflex
In two experiments, we examined the possibility that the human vestibulo-ocular reflex (VOR) is subject to dual adaptation (the ability to adapt to a sensory rearrangement more rapidly and/or more completely after repeated experience with it) and adaptive generalization (the ability to adapt more readily to a novel sensory rearrangement as a result of prior dual adaptation training). In Experiment 1, the subjects actively turned the head during alternating exposure to a visual-vestibular rearrangement (target/head gain = 0.5) and the normal situation (target/head gain = 0.0). These conditions produced both adaptation and dual adaptation of the VOR but no evidence of adaptive generalization when tested with a target/head gain of 1.0. Experiment 2, in which exposure to the 0.5 gain entailed externally controlled (i.e., passive) whole body rotation, resulted in VOR adaptation but no dual adaptation. As in Experiment 1, no evidence of adaptive generalization was found
Integrating language learning practises in first year science disciplines
Student retention and progression rates are a matter of concern for most institutions in the higher education sector (Burton & Dowling, 2005;. Simpson, 2006;. Tinto & Pusser, 2006) in Australia. There is also a substantial body of literature concentrating on the first year experience at university (for example, in the Australian context, see Krause, Hartley, James, McInnis, & Centre for the Study of Higher Education. University of Melbourne, 2005). One of the particular concerns is that the diversity of the student body is rapidly increasing. Of course, with diversity comes with differentiated level of preparation for academic study within the student body
Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis
Nucleic acids are potent triggers for innate immunity. Double-stranded DNA and RNA adopt different helical conformations, including the unusual Z-conformation. Z-DNA/RNA is recognised by Z-binding domains (ZBDs), which are present in proteins implicated in antiviral immunity. These include ZBP1 (also known as DAI or DLM-1), which induces necroptosis, an inflammatory form of cell death. Using reconstitution and knock-in models, we report that mutation of key amino acids involved in Z-DNA/RNA binding in ZBP1's ZBDs prevented necroptosis upon infection with mouse cytomegalovirus. Induction of cell death was cell autonomous and required RNA synthesis but not viral DNA replication. Accordingly, ZBP1 directly bound to RNA via its ZBDs. Intact ZBP1-ZBDs were also required for necroptosis triggered by ectopic expression of ZBP1 and caspase blockade, and ZBP1 cross-linked to endogenous RNA. These observations show that Z-RNA may constitute a molecular pattern that induces inflammatory cell death upon sensing by ZBP1
Illusory perceptions of space and time preserve cross-saccadic perceptual continuity
When voluntary saccadic eye movements are made to a silently ticking clock, observers sometimes think that the second hand takes longer than normal to move to its next position. For a short period, the clock appears to have stopped (chronostasis). Here we show that the illusion occurs because the brain extends the percept of the saccadic target backwards in time to just before the onset of the saccade. This occurs every time we move the eyes but it is only perceived when an external time reference alerts us to the phenomenon. The illusion does not seem to depend on the shift of spatial attention that accompanies the saccade. However, if the target is moved unpredictably during the saccade, breaking perception of the target's spatial continuity, then the illusion disappears. We suggest that temporal extension of the target's percept is one of the mechanisms that 'fill in' the perceptual 'gap' during saccadic suppression. The effect is critically linked to perceptual mechanisms that identify a target's spatial stability
The Development of Teaching Skills to Support Active Learning in University Science (ALIUS)
This paper describes an Australian Learning and Teaching Council funded project for which Learning Design is encompassed in the broadest sense. ALIUS (Active Learning In University Science) takes the design of learning back to the learning experiences created for students. ALIUS is not about designing a particular activity, or subject, or course, but rather the development of a method, or process, by which we have re-designed the way in which learning occurs in large university classrooms world wide
Automatic correction of hand pointing in stereoscopic depth
In order to examine whether stereoscopic depth information could drive fast automatic correction of hand pointing, an experiment was designed in a 3D visual environment in which participants were asked to point to a target at different stereoscopic depths as quickly and accurately as possible within a limited time window (≤300 ms). The experiment consisted of two tasks: "depthGO" in which participants were asked to point to the new target position if the target jumped, and "depthSTOP" in which participants were instructed to abort their ongoing movements after the target jumped. The depth jump was designed to occur in 20% of the trials in both tasks. Results showed that fast automatic correction of hand movements could be driven by stereoscopic depth to occur in as early as 190 ms.This work was supported by the Grants from the National Natural Science Foundation of China (60970062 and 61173116) and the Doctoral Fund of Ministry of Education of China (20110072110014)
The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis
Summary:
Expression of the initiator methionine tRNA (tRNAi
Met)
is deregulated in cancer. Despite this fact, it is not
currently known how tRNAi
Met expression levels influence
tumor progression. We have found that tRNAi
Met
expression is increased in carcinoma-associated
fibroblasts, implicating deregulated expression of
tRNAi
Met in the tumor stroma as a possible contributor
to tumor progression. To investigate how elevated
stromal tRNAi
Met contributes to tumor progression,
we generated a mouse expressing additional copies
of the tRNAi
Met gene (2+tRNAi
Met mouse). Growth
and vascularization of subcutaneous tumor allografts
was enhanced in 2+tRNAi
Met mice compared with
wild-type littermate controls. Extracellular matrix
(ECM) deposited by fibroblasts from 2+tRNAi
Met
mice supported enhanced endothelial cell and fibroblast
migration. SILAC mass spectrometry indicated
that elevated expression of tRNAi
Met significantly
increased synthesis and secretion of certain types of
collagen, in particular type II collagen. Suppression
of type II collagen opposed the ability of tRNAi
Metoverexpressing
fibroblasts to deposit pro-migratory
ECM. We used the prolyl hydroxylase inhibitor ethyl-
3,4-dihydroxybenzoate (DHB) to determine whether
collagen synthesis contributes to the tRNAi
Met-driven
pro-tumorigenic stroma in vivo. DHB had no effect
on the growth of syngeneic allografts in wild-type
mice but opposed the ability of 2+tRNAi
Met mice to
support increased angiogenesis and tumor growth.
Finally, collagen II expression predicts poor prognosis
in high-grade serous ovarian carcinoma. Taken
together, these data indicate that increased tRNAi
Met
levels contribute to tumor progression by enhancing
the ability of stromal fibroblasts to synthesize and
secrete a type II collagen-rich ECM that supports
endothelial cell migration and angiogenesis
- …