49 research outputs found

    Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching

    Get PDF
    Our rapidly warming climate is threatening coral reefs as thermal anomalies trigger mass coral bleaching events. Deep (or "mesophotic") coral reefs are hypothesised to act as major ecological refuges from mass bleaching, but empirical assessments are limited. We evaluated the potential of mesophotic reefs within the Great Barrier Reef (GBR) and adjacent Coral Sea to act as thermal refuges by characterising long-term temperature conditions and assessing impacts during the 2016 mass bleaching event. We found that summer upwelling initially provided thermal relief at upper mesophotic depths (40 m), but then subsided resulting in anomalously warm temperatures even at depth. Bleaching impacts on the deep reefs were severe (40% bleached and 6% dead colonies at 40 m) but significantly lower than at shallower depths (60-69% bleached and 8-12% dead at 5-25 m). While we confirm that deep reefs can offer refuge from thermal stress, we highlight important caveats in terms of the transient nature of the protection and their limited ability to provide broad ecological refuge.XL Catlin Seaview Survey; Waitt Foundation; XL Catlin Group; Underwater Earth; University of Queensland; ARC Discovery Early Career Researcher Award (DECRA) [DE160101433]; Portuguese Science and Technology Foundation (FCT) [SFRH/BPD/110285/2015]; Australian Research Council (ARC

    New approaches to high-resolution mapping of marine vertical structures

    Get PDF
    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures

    Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition

    Full text link
    Coral research is being ushered into the genomic era. To fully capitalize on the potential discoveries from this genomic revolution, the rapidly increasing number of high-quality genomes requires effective pairing with rigorous taxonomic characterizations of specimens and the contextualization of their ecological relevance. However, to date there is no formal framework that genomicists, taxonomists, and coral scientists can collectively use to systematically acquire and link these data. Spurred by the recently announced “Coral symbiosis sensitivity to environmental change hub” under the “Aquatic Symbiosis Genomics Project” - a collaboration between the Wellcome Sanger Institute and the Gordon and Betty Moore Foundation to generate gold-standard genome sequences for coral animal hosts and their associated Symbiodiniaceae microalgae (among the sequencing of many other symbiotic aquatic species) - we outline consensus guidelines to reconcile different types of data. The metaorganism nature of the coral holobiont provides a particular challenge in this context and is a key factor to consider for developing a framework to consolidate genomic, taxonomic, and ecological (meta)data. Ideally, genomic data should be accompanied by taxonomic references, i.e., skeletal vouchers as formal morphological references for corals and strain specimens in the case of microalgal and bacterial symbionts (cultured isolates). However, exhaustive taxonomic characterization of all coral holobiont member species is currently not feasible simply because we do not have a comprehensive understanding of all the organisms that constitute the coral holobiont. Nevertheless, guidelines on minimal, recommended, and ideal-case descriptions for the major coral holobiont constituents (coral animal, Symbiodiniaceae microalgae, and prokaryotes) will undoubtedly help in future referencing and will facilitate comparative studies. We hope that the guidelines outlined here, which we will adhere to as part of the Aquatic Symbiosis Genomics Project sub-hub focused on coral symbioses, will be useful to a broader community and their implementation will facilitate cross- and meta-data comparisons and analyses

    Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes

    Get PDF
    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries

    Rapid glaciation and a two-step sea-level plunge into The Last Glacial Maximum

    Get PDF
    The approximately 10,000-year-long Last Glacial Maximum, before the termination of the last ice age, was the coldest period in Earth’s recent climate history1. Relative to the Holocene epoch, atmospheric carbon dioxide was about 100 parts per million lower and tropical sea surface temperatures were about 3 to 5 degrees Celsius lower2,3. The Last Glacial Maximum began when global mean sea level (GMSL) abruptly dropped by about 40 metres around 31,000 years ago4 and was followed by about 10,000 years of rapid deglaciation into the Holocene1. The masses of the melting polar ice sheets and the change in ocean volume, and hence in GMSL, are primary constraints for climate models constructed to describe the transition between the Last Glacial Maximum and the Holocene, and future changes; but the rate, timing and magnitude of this transition remain uncertain. Here we show that sea level at the shelf edge of the Great Barrier Reef dropped by around 20 metres between 21,900 and 20,500 years ago, to −118 metres relative to the modern level. Our findings are based on recovered and radiometrically dated fossil corals and coralline algae assemblages, and represent relative sea level at the Great Barrier Reef, rather than GMSL. Subsequently, relative sea level rose at a rate of about 3.5 millimetres per year for around 4,000 years. The rise is consistent with the warming previously observed at 19,000 years ago1,5, but we now show that it occurred just after the 20-metre drop in relative sea level and the related increase in global ice volumes. The detailed structure of our record is robust because the Great Barrier Reef is remote from former ice sheets and tectonic activity. Relative sea level can be influenced by Earth’s response to regional changes in ice and water loadings and may differ greatly from GMSL. Consequently, we used glacio-isostatic models to derive GMSL, and find that the Last Glacial Maximum culminated 20,500 years ago in a GMSL low of about −125 to −130 metres.Financial support of this research was provided by the JSPS KAKENHI (grant numbers JP26247085, JP15KK0151, JP16H06309 and JP17H01168), the Australian Research Council (grant number DP1094001), ANZIC, NERC grant NE/H014136/1 and Institut Polytechnique de Bordeaux

    Morphological traits can track coral reef responses to the Anthropocene

    Full text link
    Susceptibility to human-driven environmental changes is mediated by species traits. Therefore, identifying traits that predict organism performance, ecosystem function and response to changes in environmental conditions can help forecast how ecosystems are responding to the Anthropocene. Morphology dictates how organisms interact with their environment and other organisms, partially determining the environmental and biological contexts in which they are successful. Morphology is important for autogenic ecosystem engineering organisms, such as reef-building corals, because it determines the shape of the structures they create and by extension the communities they support. Here, we present six morphological traits that capture variation in volume compactness, surface complexity and top-heaviness. With support from the literature, we propose causal links between morphology and a performance–function–response framework. To illustrate these concepts, we combine 3D scanning and coral survey data to predict morphological traits from in situ colonies. We present a case study that examines how assemblage-scale morphological traits have responded to two cyclones and the 2016 mass bleaching event—two phenomena predicted to increase in severity in the Anthropocene—and discuss how these changes may impact ecosystem function. The morphological traits outlined here offer a generalised and hypothesis-driven approach to tracking how reefs respond to the Anthropocene. The ability to predict these traits from field data and the increasing use of photogrammetry makes them readily applicable across broad spatiotemporal scales. A plain language summary is available for this article

    The Great Barrier Reef and Coral Sea (vol 20, 2019)

    Full text link

    Coral reef annihilation, persistence and recovery at Earth’s youngest volcanic island

    Full text link
    The structure and function of coral reef ecosystems is increasingly compromised by multiple stressors, even in the most remote locations. Severe, acute disturbances such as volcanic eruptions represent extreme events that can annihilate entire reef ecosystems, but also provide unique opportunities to examine ecosystem resilience and recovery. Here, we examine the destruction, persistence and initial recovery of reefs associated with the hydro-magmatic eruption that created Earth’s newest landmass, the Hunga Tonga–Hunga Ha’apai volcanic island. Despite extreme conditions associated with the eruption, impacts on nearby reefs were spatially variable. Importantly, even heavily affected reefs showed signs of rapid recovery driven by high recruitment, likely from local refuges. The remote location and corresponding lack of additional stressors likely contribute to the resilience of Hunga’s reefs, suggesting that in the absence of chronic anthropogenic stressors, coral reefs can be resilient to one of the largest physical disturbances on Earth
    corecore