217 research outputs found

    Photometric Accretion Signatures Near the Substellar Boundary

    Full text link
    Multi-epoch imaging of the Orion equatorial region by the Sloan Digital Sky Survey has revealed that significant variability in the blue continuum persists into the late-M spectral types, indicating that magnetospheric accretion processes occur below the substellar boundary in the Orion OB1 association. We investigate the strength of the accretion-related continuum veiling by comparing the reddening-invariant colors of the most highly variable stars against those of main sequence M dwarfs and evolutionary models. A gradual decrease in the g band veiling is seen for the cooler and less massive members, as expected for a declining accretion rate with decreasing mass. We also see evidence that the temperature of the accretion shock decreases in the very low mass regime, reflecting a reduction in the energy flux carried by the accretion columns. We find that the near-IR excess attributed to circumstellar disk thermal emission drops rapidly for spectral types later than M4. This is likely due to the decrease in color contrast between the disk and the cooler stellar photosphere. Since accretion, which requires a substantial stellar magnetic field and the presence of a circumstellar disk, is inferred for masses down to 0.05 Msol we surmise that brown dwarfs and low mass stars share a common mode of formation.Comment: 37 pages, 14 figures, accepted by A

    The Mass Function of Newly Formed Stars (Review)

    Full text link
    The topic of the stellar "original mass function" has a nearly 50 year history,dating to the publication in 1955 of Salpeter's seminal paper. In this review I discuss the many more recent results that have emerged on the initial mass function (IMF), as it is now called, from studies over the last decade of resolved populations in star forming regions and young open clusters.Comment: 9 pages, 1 figure; to appear in "The Dense Instellar Medium in Galaxies -- 4'th Cologne-Bonn-Zermatt-Symposium" editted by S. Pfalzner, C. Kramer, C. Straubmeier and A. Heithausen, Springer-Verlag (2004

    A different look at the spin state of Co3+^{3+} ions in CoO5_{5} pyramidal coordination

    Full text link
    Using soft-x-ray absorption spectroscopy at the Co-L2,3L_{2,3} and O-KK edges, we demonstrate that the Co3+^{3+} ions with the CoO5_{5} pyramidal coordination in the layered Sr2_2CoO3_3Cl compound are unambiguously in the high spin state. Our result questions the reliability of the spin state assignments made so far for the recently synthesized layered cobalt perovskites, and calls for a re-examination of the modeling for the complex and fascinating properties of these new materials.Comment: 5 pages 3 figure

    Accretion in Young Stellar/Substellar Objects

    Full text link
    We present a study of accretion in a sample of 45 young, low mass objects in a variety of star forming regions and young associations, about half of which are likely substellar. Based primarily on the presence of broad, asymmetric Halpha emission, we have identified 13 objects (~30% of our sample) which are strong candidates for ongoing accretion. At least 3 of these are substellar. We do not detect significant continuum veiling in most of the accretors with late spectral types (M5-M7). Accretion shock models show that lack of measurable veiling allows us to place an upper limit to the mass accretion rates of <~ 10^{-10} Msun/yr. Using magnetospheric accretion models with appropriate (sub)stellar parameters, we can successfully explain the accretor Halpha emission line profiles, and derive quantitative estimates of accretion rates in the range 10^{-12} < Mdot < 10^{-9} Msun/yr. There is a clear trend of decreasing accretion rate with stellar mass, with mean accretion rates declining by 3-4 orders of magnitude over ~ 1 - 0.05 Msun.Comment: 38 pages, including 8 figures and 6 tables, accepted by Ap

    25 Orionis: A Kinematically Distinct 10 Myr Old Group in Orion OB1a

    Get PDF
    We report here on the photometric and kinematic properties of a well defined group of nearly 200 low-mass pre-main sequence stars, concentrated within ~ 1 deg of the early-B star 25 Ori, in the Orion OB1a sub-association. We refer to this stellar aggregate as the 25 Orionis group. The group also harbors the Herbig Ae/Be star V346 Ori and a dozen other early type stars with photometry, parallaxes, and some with IR excess emission, consistent with group membership. The number of high and low-mass stars is in agreement with expectations from a standard Initial Mass Function. The velocity distribution for the young stars in 25 Ori shows a narrow peak centered at 19.7 km/s, very close to the velocity of the star 25 Ori. Our results provide new and compelling evidence that the 25 Ori group is a distinct kinematic entity, and that considerable space and velocity structure is present in the Ori OB1a sub-association. The low-mass members follow a well defined band in the color-magnitude diagram, consistent with an isochronal age of ~ 7-10 Myr, depending on the assumed evolutionary model. The highest density of members is located near the star 25 Ori, but the actual extent of the cluster cannot be well constrained with our present data. In a simple-minded kinematic evolution scenario, the 25 Ori group may represent the evolved counterpart of a younger aggregate like the sigma Ori cluster. The 25 Ori stellar aggregate is the most populous ~ 10 Myr sample yet known within 500 pc, setting it as an excellent laboratory to study the evolution of solar-like stars and protoplanetary disks.Comment: 28 pages, 5 figures. Astrophysical Journal, in press. Abridged abstrac

    Discovery of the Optical Transient of the Gamma Ray Burst 990308

    Full text link
    The optical transient of the faint Gamma Ray Burst 990308 was detected by the QUEST camera on the Venezuelan 1-m Schmidt telescope starting 3.28 hours after the burst. Our photometry gives V=18.32±0.07V = 18.32 \pm 0.07, R=18.14±0.06R = 18.14 \pm 0.06, B=18.65±0.23B = 18.65 \pm 0.23, and R=18.22±0.05R = 18.22 \pm 0.05 for times ranging from 3.28 to 3.47 hours after the burst. The colors correspond to a spectral slope of close to fνν1/3f_{\nu} \propto \nu^{1/3}. Within the standard synchrotron fireball model, this requires that the external medium be less dense than 104cm310^{4} cm^{-3}, the electrons contain >20> 20% of the shock energy, and the magnetic field energy must be less than 24% of the energy in the electrons for normal interstellar or circumstellar densities. We also report upper limits of V>12.0V > 12.0 at 132 s (with LOTIS), V>13.4V > 13.4 from 132-1029s (with LOTIS), V>15.3V > 15.3 at 28.2 min (with Super-LOTIS), and a 8.5 GHz flux of <114μJy< 114 \mu Jy at 110 days (with the Very Large Array). WIYN 3.5-m and Keck 10-m telescopes reveal this location to be empty of any host galaxy to R>25.7R > 25.7 and K>23.3K > 23.3. The lack of a host galaxy likely implies that it is either substantially subluminous or more distant than a red shift of 1.2\sim 1.2.Comment: ApJ Lett submitted, 5 pages, 2 figures, no space for 12 coauthor

    Nature of the Low Field Transition in the Mixed State of High Temperature Superconductors

    Full text link
    We have numerically studied the statics and dynamics of a model three-dimensional vortex lattice at low magnetic fields. For the statics we use a frustrated 3D XY model on a stacked triangular lattice. We model the dynamics as a coupled network of overdamped resistively-shunted Josephson junctions with Langevin noise. At low fields, there is a weakly first-order phase transition, at which the vortex lattice melts into a line liquid. Phase coherence parallel to the field persists until a sharp crossover, conceivably a phase transition, near T>TmT_{\ell} > T_m which develops at the same temperature as an infinite vortex tangle. The calculated flux flow resistivity in various geometries near T=TT=T_{\ell} closely resembles experiment. The local density of field induced vortices increases sharply near TT_\ell, corresponding to the experimentally observed magnetization jump. We discuss the nature of a possible transition or crossover at TT_\ell(B) which is distinct from flux lattice melting.Comment: Updated references. 46 pages including low quality 25 eps figures. Contact [email protected] or visit http://www.physics.ohio-state.edu:80/~ryu/ for better figures and additional movie files from simulations. To be published in Physical Review B1 01Jun9

    Epidemiology in Latin America and the Caribbean: current situation and challenges

    Get PDF
    Background This article analyses the epidemiological research developments in Latin America and the Caribbean (LAC). It integrates the series commissioned by the International Epidemiological Association to all WHO Regions to identify global opportunities to promote the development of epidemiology

    On Solving the Coronal Heating Problem

    Full text link
    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic

    New Quasars Detected via Variability in the QUEST1 Survey

    Get PDF
    By observing the high galactic latitude equatorial sky in drift scan mode with the QUEST (QUasar Equatorial Survey Team) Phase 1 camera, multi-bandpass photometry on a large strip of sky, resolved over a large range of time scales (from hourly to biennially) has been collected. A robust method of ensemble photometry revealed those objects within the scan region that fluctuate in brightness at a statistically significant level. Subsequent spectroscopic observations of a subset of those varying objects easily discriminated the quasars from stars. For a 13-month time scale, 38% of the previously known quasars within the scan region were seen to vary in brightness and subsequent spectroscopic observation revealed that approximately 7% of all variable objects in the scan region are quasars. Increasing the time baseline to 26 months increased the percentage of previously known quasars which vary to 61% and confirmed via spectroscopy that 7% of the variable objects in the region are quasars. This reinforces previously published trends and encourages additional and ongoing synoptic searches for new quasars and their subsequent analysis. During two spectroscopic observing campaigns, a total of 30 quasars were confirmed, 11 of which are new discoveries and 19 of which were determined to be previously known. Using the previously cataloged quasars as a benchmark, we have found it possible to better optimize future variability surveys. This paper reports on the subset of variable objects which were spectroscopically confirmed as quasars.Comment: 22 pages, 3 figures, 4 tables. ApJ, submitted revised version: 19 pages, 4 figures, 2 tables, added clarifications, fixed typos, accepted by ApJ 24 Jan 200
    corecore