14 research outputs found

    Assessment of yield stability in sugarcane genotypes using non-parametric methods

    Get PDF
    The evaluation of performance stability and high yields is essential for yield trials in different environments. This study was carried out to identifysugarcane genotypesthat have both a high mean cane yield, mesured in tons of cane per hectare (TCH), and stability across seven different environments, using 11 non-parametric statistical methods: Si(1), Si(2), Si(3), Si(6), NPI(1), NPI(2), NPI(3), NPI(4), RS, TOP and DE. The data came from acane yield of 20 genotypes, as measured at seven locations over three crop-years in the sugarcane regional trials of the Instituto Nacional de Investigaciones Agrícolas (INIA) of Venezuela. The genotypes V99-213, V99-236 and V00-50 showed promising yields and stability according to all of the non-parametric statistics. The TCH presented a positive association with the TOP, NPI(2), NPI(3) and Si(6) statistics. The analysis distinguished two groups of statistics using a principal component analysis (PCA). The first group (G1) was composed of the TOP, NPI(4), NPI(2), NPI(3), Si(3) and Si(6) statistics, which were located under the concept of dynamic or agronomic stability because they are associated with yield. The other group (G2) was composed of the NPI(1), Si(1), Si(2), DE and RS statistics, which fell within the static or biological stability concept

    Effectiveness of nursing training to reduce anemia in children under five years.

    No full text
    El diseño utilizado para desarrollar este trabajo de investigación fue la revisión sistemática, el cual tuvo como base el sistema de evaluación GRADE para evaluar la calidad de la evidencia de los artículos seleccionados de las siguientes bases de datos: Epistemonikos, PubMed, ScientDirect, Cochrane y Ebsco. Resultados: Los artículos revisados evidenciaron que el 30% es de revisión sistemática, el 20% es de revisión sistemática y meta-análisis, el 10% de ensayo controlado aleatorizado, el 10% es de estudio de campo aleatorizado, el 10% es de ensayo clínico aleatorizado, el 10% de diseño cuasi experimental y el 10% de intervención controlada. Por otra parte, en el 90% de los artículos se encontró evidencia de la efectividad de la capacitación de enfermería para reducir la anemia en niños menores de cinco años, mientras que un 10% no encontró evidencia respecto a la efectividad de la capacitación de enfermería para reducir la anemia en niños menores de cinco años. Conclusión: De los 10 artículos revisados sistemáticamente en (9/10) se encontró que existe efectividad de la capacitación de enfermería para reducir la anemia en niños menores de cinco años.Trabajo Académic

    MANEJO INTEGRADO DE NINFAS DE Aeneolamia varia (HEMIPTERA: CERCOPIDAE) EN CAÑA DE AZÚCAR

    No full text
    La candelilla (Aeneolamia varia) es un insecto plaga. Su amplia distribución y nivel de daño económico, limita la producción azucarera de Venezuela y el mundo. Con el objeto de aplicar un programa de manejo integral del insecto, un ensayo de caña de azúcar fue establecido el año 2007 (periodo de lluvias) en la Estación Local Yaritagua (INIA-Yaracuy). En el terreno fueron establecidos 30 puntos de monitoreo. Semanalmente se cuantificaban las ninfas de A. varia presentes en cada punto para determinar la distribución espacial y temporal de las ninfas, así como también, valores de umbrales económicos (UE) o de control (UC). Con la información obtenida se realizaron análisis de regresión de las variables medidas con la finalidad de generar modelos matemáticos predictivos y así obtener el valor del umbral económico (UE) o de control (UC) para cada semana. El sistema de información geográfica, ArcGIS 10, fue usado para generar mapas y visualizar la distribución espacio temporal de las ninfas con sus respectivos umbrales económicos donde se ameritan prácticas de control. Los resultados obtenidos, para las condiciones del ensayo, demuestran que la distribución espacial de las ninfas es forma agregada y heterogénea. Las medidas de control en el manejo integrado de este insecto, deben aplicarse cuando el número de ninfas monitoreadas (ajustado al valor de umbral económico o de control), es igual a 9, lo que ocurre en las primeras etapas del ensayo. Esto es con la finalidad de que el insecto no alcance el umbral económico de daño

    Evaluación de la interacción genotipo por ambiente para caña de azúcar (Saccharum spp. híbrido) en Venezuela

    No full text
    La selección para adaptabilidad y rendimiento en caña de azúcar es a menudo complicada por la ocurrencia de la interacción genotipo por ambiente (IGA). El objetivo de este trabajo fue evaluar 20 genotipos de caña de azúcar en siete localidades venezolanas y dos ciclos de cosecha usando diferentes modelos estadísticos. Se utilizaron los modelos de Finlay y Wilkinson, Francis y Kanneberg, análisis de efectos principales aditivos e interacción multiplicativa (AMMI) y regresión de sitios (SREG) para analizar rendimiento en toneladas de pol por hectárea (TPH). El análisis de varianza combinado de TPH mostró diferencias (P<0,01) para efectos ambientales (L), genotípicos   (G) y para la IGA (P<0,05). El efecto ambiental representó el 43,98%, el genotípico 36,93% y la IGA 19,09% de la variación total conformado por L + G + IGA. Los rendimientos de los genotipos en TPH fluctuaron desde 8,08 para ‘V91-6’ en Santa Lucía hasta 26,54 para ‘V99-208’ en Los Tamarindos. Los métodos de regresión y coeficiente de variación coinciden en ubicar a los genotipos ‘V98-120’, ‘V99-213’, ‘V99-236’, ‘V00-50’ con buen rendimiento y estabilidad. De acuerdo al biplot del modelo AMMI, los genotipos ‘CP74-2005’, ‘V00-50’ y ‘V99-213’ presentaron asociación positiva con las localidades Las Majaguas y Castillera; el genotipo ‘V99-236’ se asoció positivamente con Quebrada Arriba y el genotipo ‘V99-203’ a la localidad de Santa Lucía. El análisis SREG agrupó dos mega-ambientes, correspondiendo al primero (Mega-1) las localidades Montaña Verde, Las Majaguas y Castillera, donde los mejores genotipos fueron ‘V99-236’, ‘V00-50’, ‘V98-62’ y ‘V99-208’. El segundo mega-ambiente (Mega-2) estuvo conformado por las localidades Quebrada Arriba, Los Tamarindos y Santa Lucía y los genotipos sobresalientes fueron ‘V99-190’ y ‘V99-203’.   ABSTRACT   Selection for adaptability and yield in sugarcane is often complicated by the occurrence of genotype by environment interaction (GEI). The study evaluated 20 sugarcane genotypes in seven Venezuelan localities and two harvest cycles using different statistical models. Models Finlay and Wilkinson, Francis and Kanneberg, Additive Main effects and Multiplicative Interaction (AMMI), and Sites Regression Analysis (SREG) were used to analyze performance in tons of pol per hectare (TPH). The combined analysis of variance of TPH showed differences (P<0.01) for environmental (E) and genotypic (G) effects and significant (P <0.05) for GEI. Environmental effect captured the 43.98%, genotypic 36.93%, and GEI 19.09% of the total variation (L + G + GEI). Mean TPH yields varied from 8.08 for ‘V91-6’ in Santa Lucía to 26.54 for ‘V99-208’ at Los Tamarindos. Regression and coefficient of variation methods agreed to allocate genotypes ‘V98-120’, ‘V99-213’, ‘V99-236’, ‘V00-50’ with good performance and stability. According to AMMI, the genotypes ‘CP74-2005’, ‘V00-50’, and ‘V99-213’ showed specific adaptation to localities Las Majaguas and Castillera; genotype ‘V99-236’ was positively associated with Quebrada Arriba, and the genotype ‘V99-203’ to the location of Santa Lucía. The SREG analysis separated two mega-environments, the first coresponding to the localities of Montaña Verde, Las Majaguas, and Castillera and the best genotypes there were ‘V99-236’, ‘V00-50’, ‘V98-62’ and ‘V99-208’. The second mega-environment grouped the localities Quebrada Arriba, Los Tamarindos, and Santa Lucia and the best genotypes were ‘V99-190’ and ‘V99-203’

    Genotype by environment interaction and yield stability in sugarcane

    Get PDF
    Genotype by environment interaction (GEI) reduces the association between phenotype and genotype which result in relative ranking and stability differences of genotypes across environment. The objectives of this research were (i) to select sugarcane genotypes of high yield and stable (ii) to study the interrelationships among various parametric and no parametric stability statistics. Seventeen experimental genotypes and three check cultivars of sugarcane were evaluated at seven environment using randomized completely block design. Methodologies based on analysis parametric (Regression-bi-S2di, Shukla variance, Ecovalence-W, Coefficient of variation-CV, index of Lin and Binns-PI and AMMI value) and non-parametric statistics (Nassar and Huehn- Si(1), Si(2), Si(3), Si(6), Kang-RS, Fox-TOP, and Thennarasu- NPi(1) , NPi(2), NPi(3), NPi(4)) were used for Ton of Pol per hectare (TPH). Genotypes and environment showed high significant difference (P<0.01) while GEI was significant (P<0.05). The parametric stability analysis identified the genotypes V99-236 and V00-50 as the most stable and high TPH. With non-parametric statistics were identified the genotypes V00-50, V99-236 and V98-120 as most stable. The analysis distinguished two groups of statistics using biplot: the first group (G1) formed by PI, CV, ASV, TOP, Si(3), Si(6), NPi(2), NPi(3) and NPi(4) statistics were located under the concept of dynamic stability since they are associated with TPH. The other group (G2), formed by Shukla, W, S2di, bi, RS, Si(2), Si(1), NPi(1) statistics, fell within the static concept. Finally, genotypes V99-236 and V00-50 can be recommended as the most stable genotype in terms of both, stability and TPH

    Genotype by environment interaction and yield stability in sugarcane

    No full text
    Genotype by environment interaction (GEI) reduces the association between phenotype and genotype which result in relative ranking and stability differences of genotypes across environment. The objectives of this research were (i) to select sugarcane genotypes of high yield and stable (ii) to study the interrelationships among various parametric and no parametric stability statistics. Seventeen experimental genotypes and three check cultivars of sugarcane were evaluated at seven environment using randomized completely block design. Methodologies based on analysis parametric (Regression-bi-S2di, Shukla variance, Ecovalence-W, Coefficient of variation-CV, index of Lin and Binns-PI and AMMI value) and non-parametric statistics (Nassar and Huehn- Si(1), Si(2), Si(3), Si(6), Kang-RS, Fox-TOP, and Thennarasu- NPi(1) , NPi(2), NPi(3), NPi(4)) were used for Ton of Pol per hectare (TPH). Genotypes and environment showed high significant difference (P<0.01) while GEI was significant (P<0.05). The parametric stability analysis identified the genotypes V99-236 and V00-50 as the most stable and high TPH. With non-parametric statistics were identified the genotypes V00-50, V99-236 and V98-120 as most stable. The analysis distinguished two groups of statistics using biplot: the first group (G1) formed by PI, CV, ASV, TOP, Si(3), Si(6), NPi(2), NPi(3) and NPi(4) statistics were located under the concept of dynamic stability since they are associated with TPH. The other group (G2), formed by Shukla, W, S2di, bi, RS, Si(2), Si(1), NPi(1) statistics, fell within the static concept. Finally, genotypes V99-236 and V00-50 can be recommended as the most stable genotype in terms of both, stability and TPH

    Interacción genotipo x ambiente y estabilidad del rendimiento en caña de azúcar

    No full text
    Genotype by environment interaction (GEI) reduces the association between phenotype and genotype which result in relative ranking and stability differences of genotypes across environment. The objectives of this research were (i) to select sugarcane genotypes of high yield and stable (ii) to study the interrelationships among various parametric and no parametric stability statistics. Seventeen experimental genotypes and three check cultivars of sugarcane were evaluated at seven environment using randomized completely block design. Methodologies based on analysis parametric (Regression-bi-S2di, Shukla variance, Ecovalence-W, Coefficient of variation-CV, index of Lin and Binns-PI and AMMI value) and non-parametric statistics (Nassar and Huehn- Si(1), Si(2), Si(3), Si(6), Kang-RS, Fox-TOP, and Thennarasu- NPi(1) , NPi(2), NPi(3), NPi(4)) were used for Ton of Pol per hectare (TPH). Genotypes and environment showed high significant difference (P&lt;0.01) while GEI was significant (P&lt;0.05). The parametric stability analysis identified the genotypes V99-236 and V00-50 as the most stable and high TPH. With non-parametric statistics were identified the genotypes V00-50, V99-236 and V98-120 as most stable. The analysis distinguished two groups of statistics using biplot: the first group (G1) formed by PI, CV, ASV, TOP, Si(3), Si(6), NPi(2), NPi(3) and NPi(4) statistics were located under the concept of dynamic stability since they are associated with TPH. The other group (G2), formed by Shukla, W, S2di, bi, RS, Si(2), Si(1), NPi(1) statistics, fell within the static concept. Finally, genotypes V99-236 and V00-50 can be recommended as the most stable genotype in terms of both, stability and TPH.La interacción genotipo por ambiente (GEI) reduce la asociación entre el fenotipo y el genotipo lo cual genera cambios en el orden y en la estabilidad de genotipos a través de ambientes. Los objetivos de esta investigación fueron: (i) seleccionar genotipos de caña de azúcar de alto rendimiento y estables (ii) evaluar las interrelaciones entre diversos métodos de estabilidad paramétrica y no paramétrica. Diecisiete genotipos experimentales y tres cultivares testigos de caña de azúcar fueron evaluados en siete ambientes utilizando un diseño de bloques completamente aleatorizado. Metodologías basadas en el análisis estadístico paramétrico (Regression-bi-S2di, varianza de Shukla, Ecovalence-W, Coeficiente de variación-CV, índice de Lin y Binns-PI y AMMI) y no paramétrico (Nassar and Huehn- Si(1), Si(2), Si(3), Si(6), Kang-RS, Fox-TOP, and Thennarasu- NPi(1), NPi(2), NPi(3), NPi(4)) fueron usadas para evaluar el rendimiento en toneladas de Pol por Hectárea (TPH). Los genotipos y el ambiente mostraron diferencias estadísticamente significativas (P &lt;0,01), mientras que la GEI fue significativo (P&lt;0.05). Los estadísticos de estabilidad paramétricas identificaron los genotipos V99-236 y V00-50 como los más estables y de alto TPH y los no paramétricos distinguieron a los genotipos V00-50, V99-236 y V98-120. El biplot identifico dos grupos de estadísticos: El primer grupo formado por los estadísticos PI, CV, ASV, TOP, Si(3), Si(6), NPi(2), NPi(3), y NPi(4)) que se situaron bajo el concepto de estabilidad dinámica, ya que están asociados con TPH. El otro grupo (G2), formado por los estadísticos Shukla, W, S2di, bi, RS, Si(2), Si(1), NPi(1) caen dentro del concepto estabilidad estática. Finalmente, los genotipos V99-236 y V00-50 pueden ser recomendados como los más estables y de alto TPH

    Assessment of yield stability in sugarcane genotypes using non-parametric methods

    No full text
    The evaluation of performance stability and high yields is essential for yield trials in different environments. This study was carried out to identifysugarcane genotypesthat have both a high mean cane yield, mesured in tons of cane per hectare (TCH), and stability across seven different environments, using 11 non-parametric statistical methods: Si(1), Si(2), Si(3), Si(6), NPI(1), NPI(2), NPI(3), NPI(4), RS, TOP and DE. The data came from acane yield of 20 genotypes, as measured at seven locations over three crop-years in the sugarcane regional trials of the Instituto Nacional de Investigaciones Agrícolas (INIA) of Venezuela. The genotypes V99-213, V99-236 and V00-50 showed promising yields and stability according to all of the non-parametric statistics. The TCH presented a positive association with the TOP, NPI(2), NPI(3) and Si(6) statistics. The analysis distinguished two groups of statistics using a principal component analysis (PCA). The first group (G1) was composed of the TOP, NPI(4), NPI(2), NPI(3), Si(3) and Si(6) statistics, which were located under the concept of dynamic or agronomic stability because they are associated with yield. The other group (G2) was composed of the NPI(1), Si(1), Si(2), DE and RS statistics, which fell within the static or biological stability concept
    corecore