9 research outputs found

    A systematic review and meta-regression of exogenous ketone infusion rates and resulting ketosis—A tool for clinicians and researchers

    Get PDF
    Introduction: Ketone bodies such as beta-hydroxybutyrate (BHB) have pleiotropic functional benefits as fuel and signaling metabolites and may have multiple clinical applications. An alternative to inducing ketosis by dietary modification is intravenous delivery of exogenous sources of ketones. It is unknown whether there is a strong relationship between BHB infusion rate and blood BHB concentrations in the published literature; this information is vital for clinical studies investigating therapeutic effects of ketosis. This systematic review aimed to aggregate available data and address this gap.Methods: The PubMed and EMBASE databases were searched, and data were extracted from 23 manuscripts where BHB was infused and maximum and/or steady state BHB levels assessed. Infusion rate was adjusted when racemic BHB was infused but only D-BHB was measured.Results: Using a random effects meta-regression, strong linear relationships between BHB infusion rate and maximal (y = 0.060 + 0.870x, R2 = 87.2%, p < 0.0001) and steady state (y = −0.022 + 0.849x, R2 = 86.9%, p < 0.0001) blood BHB concentrations were found. Sensitivity analysis found this relationship was stronger when studies in non-healthy populations were excluded (y = 0.059 + 0.831x, R2 = 96.3%, p < 0.0001).Conclusion: There is a strong relationship between BHB infusion rate and blood BHB concentrations; the regressions described here can be used by clinicians or researchers to determine ketone delivery required for a target blood concentration

    Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes.

    Get PDF
    Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease

    β-Hydroxybutyrate Oxidation in Exercise Is Impaired by Low-Carbohydrate and High-Fat Availability.

    Get PDF
    Purpose: In this study, we determined ketone oxidation rates in athletes under metabolic conditions of high and low carbohydrate (CHO) and fat availability. Methods: Six healthy male athletes completed 1 h of bicycle ergometer exercise at 75% maximal power (WMax) on three occasions. Prior to exercise, participants consumed 573 mg·kg bw-1 of a ketone ester (KE) containing a 13C label. To manipulate CHO availability, athletes undertook glycogen depleting exercise followed by isocaloric high-CHO or very-low-CHO diets. To manipulate fat availability, participants were given a continuous infusion of lipid during two visits. Using stable isotope methodology, β-hydroxybutyrate (βHB) oxidation rates were therefore investigated under the following metabolic conditions: (i) high CHO + normal fat (KE+CHO); (ii) high CHO + high fat KE+CHO+FAT); and (iii) low CHO + high fat (KE+FAT). Results: Pre-exercise intramuscular glycogen (IMGLY) was approximately halved in the KE+FAT vs. KE+CHO and KE+CHO+FAT conditions (both p < 0.05). Blood free fatty acids (FFA) and intramuscular long-chain acylcarnitines were significantly greater in the KE+FAT vs. other conditions and in the KE+CHO+FAT vs. KE+CHO conditions before exercise. Following ingestion of the 13C labeled KE, blood βHB levels increased to ≈4.5 mM before exercise in all conditions. βHB oxidation was modestly greater in the KE+CHO vs. KE+FAT conditions (mean diff. = 0.09 g·min-1, p = 0.03; d = 0.3), tended to be greater in the KE+CHO+FAT vs. KE+FAT conditions (mean diff. = 0.07 g·min-1; p = 0.1; d = 0.3) and were the same in the KE+CHO vs. KE+CHO+FAT conditions (p < 0.05; d < 0.1). A moderate positive correlation between pre-exercise IMGLY and βHB oxidation rates during exercise was present (p = 0.04; r = 0.5). Post-exercise intramuscular βHB abundance was markedly elevated in the KE+FAT vs. KE+CHO and KE+CHO+FAT conditions (both, p < 0.001; d = 2.3). Conclusion: βHB oxidation rates during exercise are modestly impaired by low CHO availability, independent of circulating βHB levels

    A randomized, open-label, cross-over pilot study investigating metabolic product kinetics of the palatable novel ketone ester, bis-octanoyl (R)-1,3-butanediol, and bis-hexanoyl (R)-1,3-butanediol ingestion in healthy adults

    No full text
    Introduction Bis-octanoyl (R)-1,3-butanediol (BO-BD) is a novel, palatable ketone ester that, when consumed, is hydrolyzed in the gastrointestinal tract into octanoic acid (OCT) and (R)-1,3-butanediol (BDO) which are subsequently metabolized into beta-hydroxybutyrate (BHB). Metabolism of BO-BD is hypothesized to be similar to bis-hexanoyl (R)-1,3-butanediol (BH-BD), apart from release of octanoic acid instead of hexanoic acid (HEX). Methods As part of the safety assessment for BO-BD a randomized, cross-over, open-label study in middle-aged, healthy adults ( n = 12) was undertaken to provide a qualitative comparison of plasma BHB, OCT, HEX and BDO concentrations for 8 h following consumption of 12.5 or 25  g of BO-BD and 12.5  g of BH-BD. Results All study products increased plasma BHB and BDO up to 4 h post-consumption. BH-BD increased HEX, whereas BO-BD increased OCT. All kinetic parameters for BHB and BDO were similar between 12.5  g servings of BH-BD and BO-BD while C max and AUC for OCT were higher following 12. 5  g servings of BO-BD as compared to HEX with 12.5  g of BH-BD. All metabolites returned to baseline by 8 h post-consumption. BHB, BDO and OCT C max and AUC were increased with serving size of BO-BD from 12.5 to 25  g . Sensory acceptability scores of BO-BD were significantly higher than for BH-BD. An in vitro hydrolysis experiment using human blood plasma further confirmed that plasma esterases possess the ability to break down the novel ketone esters into BDO, and OCT or HEX. Discussion The two novel ketone ester molecules exhibit similar metabolic breakdown to BHB and BDO and result in transiently higher concentrations of the plasma fatty acids, OCT and HEX, in vivo. Conclusions Given the similar ketone delivery with greater acceptability, BO-BD may offer a more broadly translatable tool to induce physiologic ketosis than BH-BD

    On the Metabolism of Exogenous Ketones in Humans

    No full text
    Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate andquot;ketogenicandquot; diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB) concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, or ketone salts (KS); sodium plus potassium βHB. Methods and Results: In the first study, 15 participants consumed KE or KS drinks that delivered ~12 or ~24 g of βHB. Both drinks elevated blood D-βHB concentrations (D-βHB Cmax: KE 2.8 mM, KS 1.0 mM, P andlt; 0.001), which returned to baseline within 3-4 h. KS drinks were found to contain 50% of the L-βHB isoform, which remained elevated in blood for over 8 h, but was not detectable after 24 h. Urinary excretion of both D-βHB and L-βHB was andlt;1.5% of the total βHB ingested and was in proportion to the blood AUC. D-βHB, but not L-βHB, was slowly converted to breath acetone. The KE drink decreased blood pH by 0.10 and the KS drink increased urinary pH from 5.7 to 8.5. In the second study, the effect of a meal before a KE drink on blood D-βHB concentrations was determined in 16 participants. Food lowered blood D-βHB Cmax by 33% (Fed 2.2 mM, Fasted 3.3 mM, P andlt; 0.001), but did not alter acetoacetate or breath acetone concentrations. All ketone drinks lowered blood glucose, free fatty acid and triglyceride concentrations, and had similar effects on blood electrolytes, which remained normal. In the final study, participants were given KE over 9 h as three drinks (n = 12) or a continuous nasogastric infusion (n = 4) to maintain blood D-βHB concentrations greater than 1 mM. Both drinks and infusions gave identical D-βHB AUC of 1.3-1.4 moles.min. Conclusion: We conclude that exogenous ketone drinks are a practical, efficacious way to achieve ketosis.</p

    Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes

    No full text
    Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease
    corecore