482 research outputs found
Learning from Other Communities
This paper reflects a synopsis of the work in person/family-centered planning representative of its implementation across a variety of disability service systems, including prisons, schools, community-based service agencies and institutional settings. The authors who have contributed to this paper have direct experience in the field working with individuals who have disability labels of severe and persistent mental illness, mental retardation and developmental disabilities, and learning disabilities. It is their hope that this paper will serve to guide the emerging best practice in the design and delivery of person-centered service delivery systems
Recommended from our members
FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote collaboration with the control room of a Tokamak running an experiment. This is especially important since the current plans for ITER assume that this problem will be solved
Motion of the Zinc Ions in Catalysis by a Dizinc Metallo-β-Lactamase
We report rapid-freeze-quench X-ray absorption spectroscopy of a dizinc metallo-β-lactamase (MβL) reaction intermediate. The Zn(II) ions in the dinuclear active site of the S. maltophilia Class B3 MβL move away from each other, by ∼0.3 Å after 10 ms of reaction with nitrocefin, from 3.4 to 3.7 Å. Together with our previous characterization of the resting enzyme and its nitrocefin product complex, where the Zn(II) ion separation relaxes to 3.6 Å, these data indicate a scissoring motion of the active site that accompanies the ring-opening step. The average Zn(II) coordination number of 4.5 in the resting enzyme appears to be maintained throughout the reaction with nitrocefin. This is the first direct structural information available on early stage dizinc metallo-β-lactamase catalysis
That Birdie Feeling: Understanding the Role of LAN Organizers in Maintaining a Gaming Community
This paper presents the initial findings of a longitudinal study examining the role and experiences of LAN organizers in managing player communities pre, during and post the Covid 19 pandemic. Interpretative Phenomenological Analysis was used to analyze interviews with organizers of the Birdie LAN, Sweden’ s longest running LAN event. Five key themes were identified reflecting the roles of organizers and their experiences pre pandemic. (1) building and maintaining the culture, (2) encouraging inclusivity and community building, (3) negotiating professionalism, (4) learning, adapting and evolving, (5) creating sustainability through a future orientation. This paper presents the results of the first data collection to examine the impacts of the pandemic on grassroots gaming communities. The findings here represent a foundation in understanding the role of community leaders in maintaining a culture around gaming. These initial findings add value to our understanding of grassroots esports and player communities and the social practices of gaming in the modern era
Recommended from our members
Grid Logging: Best Practices Guide
The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail
Identifying Health Facilities outside the Enterprise: Challenges and Strategies for Supporting Health Reform and Meaningful Use
Objective: To support collation of data for disability determination, we sought to accurately identify facilities where care was delivered across multiple, independent hospitals and clinics. Methods: Data from various institutions' electronic health records were merged and delivered as continuity of care documents to the United States Social Security Administration (SSA). Results: Electronic records for nearly 8000 disability claimants were exchanged with SSA. Due to the lack of standard nomenclature for identifying the facilities in which patients received the care documented in the electronic records, SSA could not match the information received with information provided by disability claimants. Facility identifiers were generated arbitrarily by health care systems and therefore could not be mapped to the existing international standards. Discussion: We propose strategies for improving facility identification in electronic health records to support improved tracking of a patient's care between providers to better serve clinical care delivery, disability determination, health reform and meaningful use. Conclusion: Accurately identifying the facilities where health care is delivered to patients is important to a number of major health reform and improvement efforts underway in many nations. A standardized nomenclature for identifying health care facilities is needed to improve tracking of care and linking of electronic health records
Temporal trend in the transfer of Sellafield-derived 14C into different size fractions of the carbonate component of NE Irish Sea sediment
From 1994 onwards, 14C discharges from the Sellafield nuclear fuel reprocessing plant have been made largely to the Northeast Irish Sea. They represent the largest contributor to UK and European populations of the collective dose commitment derived from the entire nuclear industry discharges. Consequently, it is important to understand the long-term fate of 14C in the marine environment. Research undertaken in 2000 suggested that the carbonate component of Northeast Irish Sea sediments would increase in 14C activity as mollusc shells, which have become enriched in Sellafield-derived 14C, are broken down by physical processes including wave action and incorporated into intertidal and sub-tidal sediments. The current study, undertaken in 2011, tested this hypothesis. The results demonstrate significant increases in 14C enrichments found in whole mussel shells compared to those measured in 2000. Additionally, in 2000, there was an enrichment above ambient background within only the largest size fraction (>500 μm) of the intertidal inorganic sediment at Nethertown and Flimby (north of Sellafield). In comparison, the present study has demonstrated 14C enrichments above ambient background in most size fractions at sites up to 40 km north of Sellafield, confirming the hypothesis set out more than a decade ago
The medical science DMZ: a network design pattern for data-intensive medical science
Abstract:
Objective
We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations.
Materials and Methods
High-end networking, packet-filter firewalls, network intrusion-detection systems.
Results
We describe a “Medical Science DMZ” concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs.
Discussion
The exponentially increasing amounts of “omics” data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research “Big Data.” The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows.
Conclusion
By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements
- …