19 research outputs found

    Global Patterns in Seasonal Activity of Influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral Coexistence and Latitudinal Gradients

    Get PDF
    Despite a mass of research on the epidemiology of seasonal influenza, overall patterns of infection have not been fully described on broad geographic scales and for specific types and subtypes of the influenza virus. Here we provide a descriptive analysis of laboratory-confirmed influenza surveillance data by type and subtype (A/H3N2, A/H1N1, and B) for 19 temperate countries in the Northern and Southern hemispheres from 1997 to 2005, compiled from a public database maintained by WHO (FluNet). Key findings include patterns of large scale co-occurrence of influenza type A and B, interhemispheric synchrony for subtype A/H3N2, and latitudinal gradients in epidemic timing for type A. These findings highlight the need for more countries to conduct year-round viral surveillance and report reliable incidence data at the type and subtype level, especially in the Tropics

    Genetic Variants Associated With Cancer Therapy-Induced Cardiomyopathy

    Get PDF
    BACKGROUND: Cancer therapy-induced cardiomyopathy (CCM) is associated with cumulative drug exposures and preexisting cardiovascular disorders. These parameters incompletely account for substantial interindividual susceptibility to CCM. We hypothesized that rare variants in cardiomyopathy genes contribute to CCM. METHODS: We studied 213 patients with CCM from 3 cohorts: retrospectively recruited adults with diverse cancers (n=99), prospectively phenotyped adults with breast cancer (n=73), and prospectively phenotyped children with acute myeloid leukemia (n=41). Cardiomyopathy genes, including 9 prespecified genes, were sequenced. The prevalence of rare variants was compared between CCM cohorts and The Cancer Genome Atlas participants (n=2053), healthy volunteers (n=445), and an ancestry-matched reference population. Clinical characteristics and outcomes were assessed and stratified by genotypes. A prevalent CCM genotype was modeled in anthracycline-treated mice. RESULTS: CCM was diagnosed 0.4 to 9 years after chemotherapy; 90% of these patients received anthracyclines. Adult patients with CCM had cardiovascular risk factors similar to the US population. Among 9 prioritized genes, patients with CCM had more rare protein-altering variants than comparative cohorts ( P≤1.98e-04). Titin-truncating variants (TTNtvs) predominated, occurring in 7.5% of patients with CCM versus 1.1% of The Cancer Genome Atlas participants ( P=7.36e-08), 0.7% of healthy volunteers ( P=3.42e-06), and 0.6% of the reference population ( P=5.87e-14). Adult patients who had CCM with TTNtvs experienced more heart failure and atrial fibrillation ( P=0.003) and impaired myocardial recovery ( P=0.03) than those without. Consistent with human data, anthracycline-treated TTNtv mice and isolated TTNtv cardiomyocytes showed sustained contractile dysfunction unlike wild-type ( P=0.0004 and P<0.002, respectively). CONCLUSIONS: Unrecognized rare variants in cardiomyopathy-associated genes, particularly TTNtvs, increased the risk for CCM in children and adults, and adverse cardiac events in adults. Genotype, along with cumulative chemotherapy dosage and traditional cardiovascular risk factors, improves the identification of patients who have cancer at highest risk for CCM. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifiers: NCT01173341; AAML1031; NCT01371981.This work was supported in part by grants from the Instituto de Salud Carlos III (ISCIII) (PI15/01551, PI17/01941 and CB16/11/00432 to P.G-P. and L.A-P.), the Spanish Ministry of Economy and Competitiveness (SAF2015-71863-REDT to P.G-P.), the John S. LaDue Memorial Fellowship at Harvard Medical School (Y.K.), Wellcome Trust (107469/Z/15/Z to J.S.W.), Medical Research Council (intramural awards to S.A.C. and J.S.W; MR/M003191/1 to U.T), National Institute for Health Research Biomedical Research Unit at the Royal Brompton and Harefield National Health Service Foundation Trust and Imperial College London (P.J.B., S.A.C., J.S.W.), National Institute for Health Research Biomedical Research Centre at Imperial College London Healthcare National Health Service Trust and Imperial College London (D.O.R., S.A.C., S.P., J.S.W.), Sir Henry Wellcome Postdoctoral Fellowship (C.N.T.), Rosetrees and Stoneygate Imperial College Research Fellowship (N.W.), Fondation Leducq (S.A.C., C.E.S., J.G.S.), Health Innovation Challenge Fund award from the Wellcome Trust and Department of Health (UK; HICF-R6-373; S.A.C., P.J.B., J.S. W.), the British Heart Foundation (NH/17/1/32725 to D.O.R.; SP/10/10/28431 to S.A.C), Alex’s Lemonade Stand Foundation (K.G.), National Institutes of Health (R.A.: U01CA097452, R01CA133881, and U01CA097452; Z.A.: R01 HL126797; B.K.: R01 HL118018 and K23-HL095661; J.G.S. and C.E.S.: 5R01HL080494, R01HL084553), and the Howard Hughes Medical Institute (C.E.S.). The Universitario Puerta de Hierro and Virgen de la Arrixaca Hospitals are members of the European Reference Network on Rare and Complex Diseases of the Heart (Guard-Heart; http://guard-heart.ern-net.eu). This publication includes independent research commissioned by the Health Innovation Challenge Fund (HICF), a parallel funding partnership between the Department of Health and Wellcome Trust. The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Ministry of Economy, Industry and Competitiveness and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Grants from ISCIII and the Spanish Ministry of Economy and Competitiveness are supported by the Plan Estatal de I+D+I 2013-2016 – European Regional Development Fund (FEDER) “A way of making Europe”.S

    Mucinous Borderline Tumor Associated with Mesonephric-like Proliferation: Further Evidence for a Possible New Origin of Ovarian Mucinous Neoplasms

    No full text
    Some ovarian mucinous tumors are thought to originate from Brenner tumors and teratomas; however, data are limited on what could be the origin for the remaining tumors. We report a new case of ovarian mucinous borderline tumor/atypical proliferative mucinous tumor (MBT/APMT) co-existing with a mesonephric-like proliferation (MLP)/mesonephric-like hyperplasia (MLH). The patient was a 58-year-old woman who presented with a pelvic mass and abdominal pain. Pathology demonstrated an 11 cm MBT/APMT in the left ovary. In addition, the tumor contained one focal area (KRAS G12V mutation was present in both MLP/MLH and MBT/APMT components, providing further evidence to support their clonal relationship. We previously reported a series of similar cases and demonstrated a novel association between MLP, mesonephric-like adenocarcinoma and ovarian mucinous tumor. It is conceivable that benign MLPs may have ability to differentiate to lineage-specific mucinous lesions, and, as such, they may serve as a possible new origin of some ovarian mucinous neoplasms; in particular, Pax8-positive tumors. The current case provides additional evidence to support this theory

    The Evolution of Ki-67 and Breast Carcinoma: Past Observations, Present Directions, and Future Considerations

    No full text
    The 1983 discovery of a mouse monoclonal antibody—the Ki-67 antibody—that recognized a nuclear antigen present only in proliferating cells represented a seminal discovery for the pathologic assessment of cellular proliferation in breast cancer and other solid tumors. Cellular proliferation is a central determinant of prognosis and response to cytotoxic chemotherapy in patients with breast cancer, and since the discovery of the Ki-67 antibody, Ki-67 has evolved as an important biomarker with both prognostic and predictive potential in breast cancer. Although there is universal recognition among the international guideline recommendations of the value of Ki-67 in breast cancer, recommendations for the actual use of Ki-67 assays in the prognostic and predictive evaluation of breast cancer remain mixed, primarily due to the lack of assay standardization and inconsistent inter-observer and inter-laboratory reproducibility. The treatment of high-risk ER-positive/human epidermal growth factor receptor-2 (HER2) negative breast cancer with the recently FDA-approved drug abemaciclib relies on a quantitative assessment of Ki-67 expression in the treatment decision algorithm. This further reinforces the urgent need for standardization of Ki-67 antibody selection and staining interpretation, which will hopefully lead to multidisciplinary consensus on the use of Ki-67 as a prognostic and predictive marker in breast cancer. The goals of this review are to highlight the historical evolution of Ki-67 in breast cancer, summarize the present literature on Ki-67 in breast cancer, and discuss the evolving literature on the use of Ki-67 as a companion diagnostic biomarker in breast cancer, with consideration for the necessary changes required across pathology practices to help increase the reliability and widespread adoption of Ki-67 as a prognostic and predictive marker for breast cancer in clinical practice

    The Rochester Modified Magee Algorithm (RoMMa): An Outcomes Based Strategy for Clinical Risk-Assessment and Risk-Stratification in ER Positive, HER2 Negative Breast Cancer Patients Being Considered for Oncotype DX&reg; Testing

    No full text
    Introduction: Multigene genomic profiling has become the standard of care in the clinical risk-assessment and risk-stratification of ER+, HER2&minus; breast cancer (BC) patients, with Oncotype DX&reg; (ODX) emerging as the genomic profile test with the most support from the international community. The current state of the health care economy demands that cost-efficiency and access to testing must be considered when evaluating the clinical utility of multigene profile tests such as ODX. Several studies have suggested that certain lower risk patients can be identified more cost-efficiently than simply reflexing all ER+, HER2&minus; BC patients to ODX testing. The Magee equationsTM use standard histopathologic data in a set of multivariable models to estimate the ODX recurrence score. Our group published the first outcome data in 2019 on the Magee equationsTM, using a modification of the Magee equationsTM combined with an algorithmic approach&mdash;the Rochester Modified Magee algorithm (RoMMa). There has since been limited published outcome data on the Magee equationsTM. We present additional outcome data, with considerations of the TAILORx risk-stratification recommendations. Methods: 355 patients with an ODX recurrence score, and at least five years of follow-up or a BC recurrence were included in the study. All patients received either Tamoxifen or an aromatase inhibitor. None of the patients received adjuvant systemic chemotherapy. Results: There was no significant difference in the risk of recurrence in similar risk categories (very low risk, low risk, and high risk) between the average Modified Magee score and ODX recurrence score with the chi-square test of independence (p &gt; 0.05) or log-rank test (p &gt; 0.05). Using the RoMMa, we estimate that at least 17% of individuals can safely avoid ODX testing. Conclusion: Our study further reinforces that BC patients can be confidently stratified into lower and higher-risk recurrence groups using the Magee equationsTM. The RoMMa can be helpful in the initial clinical risk-assessment and risk-stratification of BC patients, providing increased opportunities for cost savings in the health care system, and for clinical risk-assessment and risk-stratification in less-developed geographies where multigene testing might not be available

    The Rochester Modified Magee Algorithm (RoMMa): An Outcomes Based Strategy for Clinical Risk-Assessment and Risk-Stratification in ER Positive, HER2 Negative Breast Cancer Patients Being Considered for Oncotype DX<sup>®</sup> Testing

    No full text
    Introduction: Multigene genomic profiling has become the standard of care in the clinical risk-assessment and risk-stratification of ER+, HER2− breast cancer (BC) patients, with Oncotype DX® (ODX) emerging as the genomic profile test with the most support from the international community. The current state of the health care economy demands that cost-efficiency and access to testing must be considered when evaluating the clinical utility of multigene profile tests such as ODX. Several studies have suggested that certain lower risk patients can be identified more cost-efficiently than simply reflexing all ER+, HER2− BC patients to ODX testing. The Magee equationsTM use standard histopathologic data in a set of multivariable models to estimate the ODX recurrence score. Our group published the first outcome data in 2019 on the Magee equationsTM, using a modification of the Magee equationsTM combined with an algorithmic approach—the Rochester Modified Magee algorithm (RoMMa). There has since been limited published outcome data on the Magee equationsTM. We present additional outcome data, with considerations of the TAILORx risk-stratification recommendations. Methods: 355 patients with an ODX recurrence score, and at least five years of follow-up or a BC recurrence were included in the study. All patients received either Tamoxifen or an aromatase inhibitor. None of the patients received adjuvant systemic chemotherapy. Results: There was no significant difference in the risk of recurrence in similar risk categories (very low risk, low risk, and high risk) between the average Modified Magee score and ODX recurrence score with the chi-square test of independence (p > 0.05) or log-rank test (p > 0.05). Using the RoMMa, we estimate that at least 17% of individuals can safely avoid ODX testing. Conclusion: Our study further reinforces that BC patients can be confidently stratified into lower and higher-risk recurrence groups using the Magee equationsTM. The RoMMa can be helpful in the initial clinical risk-assessment and risk-stratification of BC patients, providing increased opportunities for cost savings in the health care system, and for clinical risk-assessment and risk-stratification in less-developed geographies where multigene testing might not be available
    corecore