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Abstract

Background: Clinical prediction models often fail to generalize in the context of
clustered data, because most models fail to account for heterogeneity in outcome
values and covariate effects across clusters. Furthermore, standard approaches for
modeling clustered data, including generalized linear mixed-effects models, would
not be expected to provide accurate predictions in novel clusters, because such
predictions are typically based on the hypothetical mean cluster. We hypothesized
that dynamic mixed-effects models, which incorporate data from previous
predictions to refine the model for future predictions, would allow for cluster-specific
predictions in novel clusters as the model is updated over time, thus improving
overall model generalizability.

Results: We quantified the potential gains in prediction accuracy from using a
dynamic modeling strategy in a simulation study. Furthermore, because clinical
prediction models in the context of clustered data often involve outcomes that are
dependent on patient volume, we examined whether using dynamic mixed-effects
models would be robust to misspecification of the volume-outcome relationship. Our
results indicated that dynamic mixed-effects models led to substantial improvements in
prediction accuracy in clustered populations over a broad range of conditions, and
were uniformly superior to static models. In addition, dynamic mixed-effects models
were particularly robust to misspecification of the volume-outcome relationship and to
variation in the frequency of model updating. The extent of the improvement in
prediction accuracy that was observed with dynamic mixed-effects models depended
on the relative impact of fixed and random effects on the outcome as well as the
degree of misspecification of model fixed effects.

Conclusions: Dynamic mixed-effects models led to substantial improvements in
prediction model accuracy across a broad range of simulated conditions. Therefore,
dynamic mixed-effects models could be a useful alternative to standard static models
for improving the generalizability of clinical prediction models in the setting of
clustered data, and, thus, well worth the logistical challenges that may accompany their
implementation in practice.
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Background
Despite the widespread adoption of prediction models in clinical research and medical

practice, there are often major concerns about model generalizability across different

populations and clinical settings. For instance, the EuroSCORE model, which was de-

veloped in European populations to predict 30-day mortality in patients undergoing

cardiac surgery, failed to generalize to Australian surgical patients [1], and, even within

the European population, proved inaccurate over time, over-predicting risk in contem-

porary practice [2]. In another example, a clinical prediction rule for predicting deep

vein thrombosis performed well in the secondary referral patient population in which it

was developed, but failed to generalize to a primary care setting [3]. This problem is

likely even more widespread than what has been directly documented in the literature

because of the many clinical outcomes that are known to vary substantially across clin-

ical sites, including readmission after hospitalization for heart failure [4], mortality fol-

lowing surgery for colorectal cancer [5], false-positive results from mammographic

screening [6], graft failure after liver transplantation [7], and medication adherence

rates among diabetes patients [8]. However, despite the high prevalence of such prob-

lems, relatively little research has been done to develop general approaches for improv-

ing model performance in the context of clustered, heterogeneous populations.

Notably, established methods for reducing overfitting, such as Bayesian model aver-

aging [9], bootstrap aggregation or bagging [10], and cross-validation [11], would not

be expected to improve model generalizability in this context, because they are unable

to test the model on samples from a different empirical distribution than the derivation

dataset, which is generally composed of data from a small number of clusters within a

larger clustered population.

One standard approach to modeling clustered data is with generalized linear mixed-

effects models (GLMM), which use random effects to parameterize heterogeneity in ef-

fects across clusters and induce a within-cluster correlation structure [12]. Although

GLMMs are theoretically capable of producing cluster-specific predictions, they would

not be expected to improve overall model generalizability across a clustered population,

because predictions on novel clusters (i.e. those that are not included in the original

data sample) are still based on the hypothetical mean cluster [13]. As a result, any

improvement in prediction accuracy that results from using mixed-effects models is

generally because of shrinkage effects, rather than incorporating knowledge about

cluster-specific differences. This limitation may explain why GLMMs are not used

more frequently for clinical prediction models.

However, this limitation of standard GLMMs may be alleviated if they are estimated

in a dynamic fashion. Dynamic prediction models have been recently proposed as a

method to improve the calibration of prediction models over time. In dynamic predic-

tion modeling, predictions are made on individuals using the best available model at

that time. Then, as the outcome data from previous predictions become available, they

can be incorporated into the data sample and used to update or refine the model.

Model updating can be performed in an online fashion through the continual adjust-

ment of Bayesian priors or by re-estimating the model using all of the available data in

either a Bayesian or frequentist approach [2, 14]. This method has been successfully

demonstrated in empirical examples [2, 14]. However, to our knowledge, this approach

has not previously been extended to prediction models in the context of clustered data,
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for which it might be expected to improve model generalizability. In particular, if a dy-

namic modeling framework were applied to mixed-effects models, novel clusters would

be converted into existing clusters within the data sample over time, allowing for pre-

dictions that account for cluster-specific differences. Thus, with dynamic mixed-effects

models, model generalizability can be improved over time as the model is used and up-

dated over an increasing number of unique clusters. Furthermore, previous research

has not studied the impact of model misspecification or updating frequency on the ac-

curacy of dynamic prediction models. These latter questions, in particular, are not eas-

ily addressed analytically and require direct testing via simulation.

In addition, many important clinical outcomes in the setting of clustered data show a

relationship between the outcome and cluster size, which is often referred to in the

clinical literature as ‘volume.’ For instance, it is well established that mortality following

major surgery is inversely related to the volume of patients receiving a given surgery at

a particular hospital [15]. This relationship has held true for many different specific

areas of surgery, as well, including thoracic [16], oncologic [17], and endovascular

surgery [18]. Hospital volume is also an important predictor of mortality following

hospitalization for myocardial infarction [19], mortality following inpatient mechanical

ventilation [20], and mortality following hospitalization for severe sepsis [21], among

other outcomes. Because many specific cases of prediction models in the context of

clustered data would be expected to have this volume-outcome relationship, it is

important to determine the robustness of the dynamic mixed-effects model approach

to misspecification of this association. Furthermore, while many other cluster-specific

effects would be expected to be easily accommodated by random intercepts and slopes

in dynamic mixed-effects models, the effect of volume could theoretically behave differ-

ently because it is directly related to the probability of observing the data responsible

for the updating process. In other words, predictions at smaller clusters could become

biased because the predictions are too heavily shrunk toward the predictions at larger

clusters, which make up the preponderance of the data. As a result, the robustness of

the dynamic approach to misspecification of the volume-outcome relationship needs to

be specifically assessed.

In this paper, we sought to quantify the potential improvement in prediction accuracy

from dynamic mixed-effects models in the context of clustered data via a simulation

study. We also examined whether using dynamic mixed-effects models would be robust

to misspecification of the volume-outcome relationship, misspecification of model fixed

effects, and variable frequencies of model updating. The results of these simulations

demonstrate the general utility of dynamic mixed-effects models for producing more

generalizable clinical prediction models in the setting of clustered data, and provide

motivation for further research toward solving the logistical and analytical challenges

that may accompany this approach in practice.

Methods
Dynamic mixed-effects models

GLMMs account for clustering in the outcome by treating some model parameters as

random, rather than fixed, across the population. These models typically follow

the form:
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g E Y ijjXij; bi
� �� � ¼ Xijβþ Zibi; ð1Þ

in which the link function g(∙) relates the average outcome Yij for individual j in cluster

i to the observed covariate design matrices Xij and Zi through a vector of fixed effects β

and a vector of random effects bi, respectively [12]. Random effects are typically mod-

eled parametrically as N 0;Gð Þ , where G is the variance-covariance matrix of the ran-

dom effects. Use of this parametric structure for the random effects is typically more

efficient than cluster-level fixed effects, making it especially useful in settings where

there are a large number of clusters.

Mixed-effects models can be estimated using either a frequentist or Bayesian ap-

proach. In the context of Bayesian linear mixed-effects (BLME) models, prior distribu-

tions for β and bi —as well as the variance of the residual error conditional on the

random effects, σ2 —are fully specified and used to estimate posterior distributions

based on available data. The parametric structure of the random effects is specified as

hyperpriors on the distribution of bi. Thus, using our previous notation, the posterior

distribution of model parameters can be estimated conditional on the observed data as:

p β; bi; σ
2jY ij

� �
∝p Y ijjβ; bi; σ2

� �
p β; bi; σ

2
� �

; ð2Þ

for which p(β, bi, σ
2) is the prior distribution of all model parameters and p(Yij|β, bi, σ

2)

is the likelihood of the observed data given the model. Depending on the specific appli-

cation and the availability of prior information, prior distributions can be specified as

informative or non-informative. Use of non-informative priors is reflective of a typical

scenario for the initial development of a prediction model, when most researchers

would want to “let the data speak for themselves.”

We refer to the above models as ‘static’ models, because once they are estimated in

the derivation dataset, which we call the ‘training sample,’ the resulting model is used

to make out-of-sample predictions on the remainder of the population, which we call

the ‘testing sample,’ without any further refinement or adjustment. By contrast, dynamic

models are designed to capture data from out-of-sample predictions to update the

model for future predictions. Thus, the number of observations in the training sample

grows over time t, such that:

Xm tð Þ
i¼1

Ni tð Þ≤
Xm tþΔtð Þ

i¼1
Ni t þ Δtð Þ; ð3Þ

for which Ni(t) is the number of patients in the training sample for cluster i at time t,

and m(t) is the number of clusters in the training sample at time t. Also implied here

is that the number of clusters in the training sample is growing over time, or m(t) ≤
m(t +Δt). Static models are therefore a subset of dynamic models for which Ni(t) =

Ni(t +Δt) and m(t) =m(t + Δt) for all t. Furthermore, the quantity of data over time is

really the only difference between the two types of models, and, at any time t, the

dynamic model is equivalent to the static model that would have been produced if the

original training sample were the same as the training sample at time t. Note that the

model priors are not changing over time in our approach; however, accounting for

previous data in dynamic priors could be an alternative approach to implementing a

dynamic prediction model [14].

Combining a dynamic modeling approach with generalized mixed-effects models

would therefore be expected to allow a single prediction model to calibrate to local
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conditions, by incorporating novel clusters into the data sample used for model estima-

tion over time. In essence, many predictions that would have been made based on the

hypothetical mean cluster (bi = 0) with static models can be made using cluster-specific

random effects with dynamic models, and the extent of the improvement in prediction

accuracy from dynamic prediction models should depend on how quickly these cluster-

specific random effects can be estimated. Additionally, as with any mixed-effects model,

predictions at individual clusters are able to borrow strength from data at other clusters

to avoid the overfitting that might occur if separate models were fit at each cluster.

Simulation study

In our simulation, we aimed to develop and assess the accuracy of a model to predict a

hypothetical clinical outcome for individual patients, who are clustered within clinics.

The outcome Yij —which represented a hypothetical normally distributed, continuous

clinical outcome for patient j at clinic i—was dependent on X1ij, a known patient-level

predictor; X2ij, an unknown patient-level predictor; and Ni, the size of the clinic. Note

that X1ij and X2ij can also be interpreted as linear combinations of important predictors,

rather than just a single predictor. Clustering of the outcome was induced by a clinic-

level random intercept b0i and random slopes b1i and b2i. From 500 total clinics in the

population, 20 were randomly selected as the training sample. Using the training sam-

ple, we fit both dynamic and static versions of models with fixed effects only, as well as

those with random intercepts and random slopes. These models were then assessed in

the remaining clinics in the population, which constituted the testing sample. For each

combination of parameter values, the simulation was run 1,000 times to estimate the

degree of variability in the results. All simulations were performed using R 3.1.1 [22].

Data-generating process

For all simulations, we first generated a population of 500 clinics, each with Ni patients,

with:

Ni ∼ ⌈ exp N μN ; σ
2
N

� �� �
⌉ ð4Þ

The log-normal distribution ensured that there were a large number of smaller

clinics, with a small number of very large clinics. The value for μN, for which exp (μN)

was equivalent to the median clinic size, was fixed at ln(65), while the value for σN was

fixed at ln(2), in order to ensure a range of clinic sizes of approximately 10 to 500

patients. Note that Ni refers to the number of patients at a clinic for whom predictions

will be made; patients at a given clinic who are not candidates for prediction do not

matter for purposes of this simulation.

Next, clinic-level random intercepts and slopes were generated from a multivariate

normal distribution:

b0i; ; b1i; ; b2if g ∼ N 0;Tð Þ; ð5Þ

for which b0i was the random intercept, b1i was the random slope for X1ij, b2i was the

random slope for X2ij, and the variance-covariance matrix was:
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T ¼
τ20 ρτ1τ0 ρτ2τ0

ρτ0τ1 τ21 ρτ2τ1
ρτ0τ2 ρτ1τ2 τ22

2
4

3
5 ð6Þ

The correlation between the random intercept and random slopes, ρ, was fixed at a

moderate value of 0.3, which was felt to be similar to what might be observed in prac-

tice. However, sensitivity analyses demonstrated that the results were insensitive to in-

creases or decreases in the value of the correlation (data not shown). Additionally, we

determined that having the correlation between the random slopes differ from the cor-

relation between the random intercept and random slopes did not have a substantial

impact on the results (data not shown), so the same value for all correlations was used

to improve model simplicity.

After clinic-level random effects were generated, patient-level variables were gener-

ated. First, X1ij and X2ij were generated as N 0; 1ð Þ variables. The variance for these var-

iables was fixed at 1 for all parameter combinations to provide a reference point for

easier interpretation of the values of other parameters. We varied τ0
2 and τ1

2 to deter-

mine the impact of different relative strengths of clinic-level heterogeneities, compared

to patient-level factors.

The outcome Yij was then generated as:

Y ij ¼ b0i þ β1 þ b1ið ÞX1ij þ β2 þ b2ið ÞX2ij þ γf Nið Þ þ �ij; ð7Þ

for which ij were independent errors distributed as N 0; σ�2Þ
�

. The value of σ2 was

calculated as:

σ∈
2 ¼ α

1−α
Var

�
b0i þ ðβ1 þ b1iÞX1ij þ ðβ2 þ b2iÞX2ij þ γf ðNiÞ

�
; ð8Þ

with a value of α = σ2 /σY
2 = 0.2 chosen so that the variance of the residual error terms

was equal to 20 % of the total variance in Yij, denoted by σY
2. This value was thought to

be reflective of a typical high-quality clinical prediction model developed by rigorous

methods, where the majority of the variance is explained by the model. The value of α

was varied in sensitivity analyses to ensure that the results of the simulation were not

dependent on the value of this parameter. Clinic size was associated with the outcome

through the function f(∙), with:

f Nið Þ ¼ Ω ln Nið Þ−mean ln Nið Þð Þð Þ; ð9Þ

for which Ω was a scaling factor such that f Nið Þ e N 0; 1ð Þ. The value for β1 was fixed

at one across all simulations, so that β2 and γ gain the interpretation of the impact of

X2ij and clinic size on the outcome, respectively, relative to the impact of X1ij. Note that

the overall intercept across all clinics, β0, was defined as equal to 0 and is thus not

included in Equation 7.

Parameter values

The main parameters that were varied for our simulation were τ0
2 and τ1

2, which con-

trolled the relative impact of patient-level factors and clinic-level heterogeneities on the

outcome. Three values of each parameter were examined—0.5, 1, and 2 for τ0
2, and 0,

0.25, and 0.5 for τ1
2 —for a total of 9 main parameter combinations. The values of these

parameters can be interpreted relative to the size of the variance in X1ij, which was
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fixed at 1. Additionally, β2 and γ were fixed at zero for these main parameter combina-

tions, so that the effects of unknown patient-level factors and clinic size on the results

could be examined in isolation. When β2 was equal to zero, τ2
2 was also set equal to

zero, so that there was no effect of X2ij on Yij; when β2 was not equal to zero, τ2
2 was

set to be equal to τ1
2. We considered τ0

2 = 1, τ1
2 = 0.25, β2 = 0, and γ = 0 to be the ‘base’

parameter combination, and sensitivity analyses for individual parameters were based

on this combination of parameter values. For reference, in the base parameter combin-

ation, τ0/σ ≈ 4/3 and τ1/σ ≈ 2/3.

Next, we separately assessed the impact of non-zero values for β2 and γ. Specifically, we

examined values of
ffiffiffiffiffiffiffi
0:5

p
, 1, and

ffiffiffi
2

p
for both parameters. These values were selected for

greater interpretability, as the relative contribution of X2ij and f(Ni) to the total variance in

Yij was proportional to β2
2 and γ2, respectively. Thus, for example, when β2 ¼

ffiffiffi
2

p
, X2ij

contributed twice as much to the variance in Yij as did X1ij. This set of parameter values

likely covers the full range of what could reasonably be expected in practice, assuming

that prediction models would still be developed using rigorous methods and high quality

data. However, more extreme values of β2 were also examined in sensitivity analyses. For

this set of parameter combinations, τ0
2 and τ1

2 were fixed at their base values.

Finally, we assessed the impact of varying update intervals in an attempt to reflect longer

time lags between predictions and the occurrence of the outcome, which might take place

in certain clinical scenarios, such as those with survival-type outcomes. We examined values

of 250, 500, 1,000, and 5,000 for θ —where θ is the number of predictions made between

cycles of updating for dynamic models, and 0.8 * θ is the expected number of new subjects

incorporated into the dynamic models at each iteration, as described below. We used

θ = 500 as its base value for all previously described parameter combinations.

Prediction models

We randomly selected 20 clinics—stratified by clinic-size quintile, Ni
* —for the training

sample, mimicking a large multi-center cohort that might be used to develop a clinical

prediction model in practice. We selected 6 clinics from each of the bottom two

quintiles, three clinics from each of the next two quintiles, and two clinics from the

upper quintile. We then developed three prediction models in the training sample:

1). A linear model, β1X1ij;

2). A BLME model with a random intercept, b0i + β1X1ij;

3). A second BLME model with a random intercept and slope, b0i + (β1 + b1i)X1ij.

BLME models were fit using restricted maximum likelihood, with non-informative flat

priors for the fixed effects and a non-informative prior for the random effects covariance

matrix based on the Wishart distribution. Estimation of BLME models was accomplished

using the blme extension package in R [23]. Additionally, for simulations when γ ≠ 0, we

also constructed versions of the above models that included Ni
* as a categorical fixed effect,

because it was felt that Ni
* would be more likely to be observable than f(Ni) in practice.

All three models were assessed in the testing sample both as dynamic and static

models. Note that the static linear model is meant to reflect the typical prediction

model that would be developed and used in practice. Dynamic modeling was achieved
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by making predictions on θ patients, incorporating outcome data on those individuals

back into the training sample, re-estimating the models, and then making predictions

on the next θ patients. This algorithm was repeated until predictions had been made

on all patients in the testing sample. For BLME models, this was equivalent to adding

new data, and did not affect the model priors. The order of predictions was random

across the entire testing sample, and each individual had an 80 % chance to have their

outcome data incorporated into the training sample for future model updates. We

chose 80 % because it realistically allows for missing outcome data; this is reflective of

missing outcome data that might occur when utilizing a dynamic prediction modeling

scheme in practice, where patients might be lost to follow-up before their outcomes are

observed. Note that in this set-up, the expected number of new subjects incorporated

into the dynamic model at each iteration is 80 % of the value of θ.

Assessment of model calibration

Accuracy of prediction models was based on model calibration, which was assessed as

mean absolute error (MAE) [24]. MAE was calculated as:

MAE ¼ ϕmodel ¼
1
n

X
Ŷ ij−Y ij

		 		; ð10Þ

for which n was the total number of individuals in the training sample. To improve the

interpretability of the results, we constructed a metric, the ‘relative improvement’ (RI)

in MAE, for each model, which was calculated as:

RI ¼ ϕ0−ϕmodel

ϕ0−ϕ1
; ð11Þ

where ϕ0 refers to the MAE for the intercept-only model, as fit in the training sample,

and ϕ1 refers to the MAE for the ‘true’ model, which was considered to be the model

in Equation 7, minus the residual error term, ij. Thus, the RI will typically range from

0 to 1 and can be interpreted as the improvement of the current model over the

intercept-only model, relative to the improvement that would have been seen with the

true model. Negative values for RI indicate that the given model is worse than predict-

ing the average value in all individuals. Thus, the RI for a given model is analogous to

the relative utility metric proposed by Baker [25], except in the context of model

calibration and without the decision-theoretic weighting scheme. Furthermore, because

the MAE of all of the models contain the same residual error, ij, this term is factored

out of the RI, giving the metric the advantageous feature of being relatively insensitive

to changes in the magnitude of σ2 .

Results
Population characteristics

There were 41,576 (SD 1,465) patients in the total simulated population, on aver-

age, with 1,276 (SD 118) patients in the training sample. Within a given simula-

tion, clinics ranged in size from 9 to 549 patients, on average. The median clinic

had 66 patients, and 67 % of patients were in clinics in the top two quintiles of

clinic size. Clinics in the smallest quintile of clinic size had between 9 and 36

patients, on average, while those in the largest quintile had 117 or more patients,
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on average. A visualization of the effect of varying τ0
2 and τ1

2 on clinic-level cluster-

ing can be seen in Additional file 1: Figure S1.

Main parameter results

As can be seen in Table 1, the prediction models were very accurate in the training sam-

ple, with the RI in the training sample ranging from 24 to 101 %, depending on the model

and parameter combination. In particular, RI in the training sample was uniformly 101 %

for the BLME model with both a random intercept and random slope, indicating overfit-

ting. Although the addition of random effects led to dramatic improvements in the model

accuracy in the training sample, they led to virtually no improvement in the accuracy of

predictions as assessed in the testing sample, with a mean RI of 33 to 34 % for all static

models for the base parameter combination. In contrast, use of dynamic modeling led to

dramatic improvements in RI for both BLME models, across all main parameter combina-

tions tested, with RI values generally in excess of 70 % (Fig. 1).

As can be seen in Fig. 2, gains in prediction accuracy from dynamic mixed-effects

models were seen across all clinic-size quintiles, although the greatest improvement

was seen in the largest clinics. This pattern likely reflects the fact that improvements

from dynamic modeling were seen relatively rapidly, with approximately 80 % of the

total gains in predictive performance for the dynamic BLME models occurring on aver-

age after about 7 and 9 predictions at a given clinic for the model with a random inter-

cept and the model with both a random intercept and random slope, respectively

(Fig. 3). Because there were 480 clinics in the testing sample and the model was up-

dated after every 500 predictions, model updates occurred after almost every predic-

tion, especially at smaller clinics. The rate of improvement in predictive accuracy was

somewhat sensitive to changes in σ2 , however, with 80 % of the total gains in predict-

ive performance for the dynamic BLME model with both a random intercept and slope

occurring after about 17 predictions at a given clinic, on average, when the residual

error was equal to 50 % of the overall variance in Yij (Additional file 1: Figure S2).

Noticeable decreases in RI values for dynamic BLME models were seen only at very

extreme values for σ2 , such as when the residual error was equal to 80 % of the total

variance in Yij (Additional file 1: Figure S3). However, even at this extreme and likely

Table 1 Mean RI for static models in training sample for all main parameter combinations

τ12 Model τ02 = 0.5 τ02 = 1 τ02 = 2

β1X1 0.424 (0.121) 0.337 (0.114) 0.244 (0.101)

0.5 b0i + β1X1 0.714 (0.099) 0.767 (0.084) 0.826 (0.068)

b0i + (β1 + b1i)X1 1.014 (0.006) 1.014 (0.005) 1.014 (0.006)

β1X1 0.496 (0.105) 0.382 (0.107) 0.267 (0.097)

0.25 b0i + β1X1 0.827 (0.067) 0.863 (0.056) 0.902 (0.044)

b0i + (β1 + b1i)X1 1.014 (0.005) 1.013 (0.005) 1.013 (0.005)

β1X1 0.604 (0.098) 0.445 (0.106) 0.297 (0.097)

0 b0i + β1X1 1.007 (0.003) 1.007 (0.003) 1.007 (0.004)

b0i + (β1 + b1i)X1 1.013 (0.004) 1.013 (0.005) 1.013 (0.005)

Results presented as mean (SD) for 1,000 simulations

Finkelman et al. BioData Mining  (2016) 9:5 Page 9 of 21



unrealistic parameter value, dynamic BLME models outperformed static models, with

RI values for the former in excess of 70 %.

Effect of model misspecification

When there was an unknown patient-level factor impacting the outcome (i.e. β2 ≠ 0),

dynamic prediction modeling was less effective (Fig. 4). However, dynamic models still were

more accurate than static models for all values of β2. Larger values of β2 were also associated

with a slower rate of improvement in predictive accuracy, with 80 % of the total gains in

predictive performance for the dynamic BLME model with both a random intercept and

slope occurring after about 21 predictions, on average, when β2 ¼
ffiffiffi
2

p
(Additional file 1:

Figure S4). Nevertheless, overall gains in prediction accuracy were still observed for clinics

in the smallest quintile of clinic size, even at larger values of β2 (data not shown).

Having the outcome be dependent on clinic size (i.e. γ ≠ 0) led to worse performance

of static BLME models, with these models performing worse than intercept-only

models at large values of γ (Fig. 5). However, dynamic BLME models showed no

Fig. 1 Relative improvement in MAE for both dynamic and static models across all main parameter
combinations. Plots show the density of values for relative improvement in MAE across 1,000 simulations,
with horizontal bars representing the mean value. All other parameters are fixed at their base values. The
center figure represents the base parameter combination
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decrease in prediction accuracy with non-zero values of γ. Including Ni
* as a categorical

fixed effect in models led to marked improvement in static BLME models, as well as

slight improvement in dynamic BLME models, on average (Fig. 6).

Effect of varying the update interval

Results were fairly insensitive to changes in θ, the update interval. Even when θ = 5,

000, or about 12.5 % of the testing sample, prediction accuracy in dynamic BLME

models was not substantially decreased (Additional file 1: Figure S5). Furthermore,

prediction accuracy was consistent across all quintiles of clinic size with varying values

of θ (Additional file 1: Figure S6). Finally, the rate of improvement in prediction accur-

acy showed a meaningful decrease only when θ = 5, 000, with about 80 % of total gains

in prediction accuracy occurring on average after about 19 and 20 predictions at a

given clinic for the model with a random intercept and the model with both a random

intercept and random slope, respectively, in this scenario (Fig. 3).

Computational time

Mean computational time for dynamic and static models under base parameter values

are shown in Fig. 7. Static models are run once using the training sample, which had

1,276 subjects on average. After an initial reduction in computational time due to the

improved efficiency from adding additional clusters, dynamic BLME models tended to

have approximately linear increases in computational time with increasing number of

iterations, as about 400 subjects were incorporated into the model for each round of

subsequent updates.

Discussion
In this simulation study, we sought to quantify the potential effect of dynamic prediction

modeling on prediction model accuracy in the context of clustered data. Dynamic BLME

models were uniformly more accurate than static models across all parameter combina-

tions examined. Moreover, they were more accurate than static models in the context of

model misspecification, and were particularly robust to misspecification of the volume-

Fig. 2 Relative improvement in MAE by clinic-size quintile. Plots show the density of values for relative
improvement in MAE across 1,000 simulations, with horizontal bars representing the mean value. These
results are for the base parameter combination
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outcome relationship. As a result, it seems quite likely that the use of dynamic mixed-

effects models would lead to substantial improvement in the generalizability of clinical

prediction models in the context of clustered data. However, the extent of the gains in

prediction accuracy from dynamic modeling was sensitive to the degree of misspecifica-

tion of model fixed effects, indicating that, as with all prediction modeling, the best results

will be seen when models are developed rigorously using high-quality data.

Impact of dynamic prediction modeling

As expected, dynamic prediction modeling did not yield substantial improvement

in prediction accuracy with the linear model, performing similarly to all static

Fig. 3 Effect of the update interval on the rate of improvement in prediction accuracy at a given clinic.
This plot shows the mean relative improvement in MAE for prediction j at clinic i, across 1,000 simulations
for different values of the update interval, θ. Vertical dashed and dotted lines indicate the point at which
80 % of the total gains in prediction accuracy have been achieved for the dynamic BLME model with a
random intercept and the dynamic BLME model with a random intercept and random slope, respectively.
Note that the base value of θ is 500, and all other parameters are fixed at their base values
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models, because the model did not have the flexibility to account for clinic-level

variability. By contrast, dynamic BLME models were able to account for this vari-

ation, leading to improvement in predictive accuracy. The dynamic BLME model

with a random intercept showed improved prediction accuracy with increasing

values of τ0
2; however, its performance deteriorated with higher values of τ1

2. This

deterioration in accuracy with larger random slopes is not surprising, because this

model had no way to account for the random slopes that were present in the data.

Even so, the model was able to use its random intercept to account for a large

enough amount of inter-clinic variability to provide substantial and uniform im-

provement over static models and the dynamic linear model.

The dynamic BLME model with both a random intercept and random slope was nearly

as accurate as the true model across all main parameter combinations, with a mean RI

ranging from 94 to 96 %. This was because the data-generating model (Equation 7) was

also based on a random intercept and random slope for most parameter combinations,

Fig. 4 Effect of unknown patient-level predictor on model prediction accuracy. Plots show the density of
values for relative improvement in MAE across 1,000 simulations, with horizontal bars representing the
mean value, for different values of β2, which controls the size of the effect of the unknown patient-level
predictor, X2ij, to the outcome, Yij. Note that the relative contribution of X2ij to the total variance in Yij,
compared to X1ij, is equal to β22. All other parameters are fixed at their base values
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and updating occurred fast enough that predictions on most individuals in the testing

sample were made with a fully calibrated model. Indeed, about 80 % of the gains in pre-

diction accuracy were seen by about the 9th patient at a given clinic, although this rate of

improvement was somewhat sensitive to the magnitude of the residual error. However,

even smaller clinics were still able to see benefits from dynamic prediction modeling

across all of the examined parameter combinations, and the majority of predictions

at large clinics were made with an accurate estimate of clinic-specific random ef-

fects. This rapid improvement in prediction accuracy was largely sustained even

with higher values of θ, so overall prediction accuracy in the testing sample was

preserved even when models were updated less frequently and using more new

data per update. It should also be noted that this high level of prediction accuracy

was sustained even when there was no random slope in the data-generating

process (τ1
2 = 0). Thus, there was not really much downside to having an unneces-

sary random slope in the dynamic BLME model, while having only a random

Fig. 5 Effect of an association between clinic size and the outcome on model prediction accuracy. Plots
show the density of values for relative improvement in MAE across 1,000 simulations, with horizontal bars
representing the mean value, for different values of γ, which controls the size of the effect of scaled clinic
size, f(Ni), on the outcome, Yij. Note that the relative contribution of f(Ni) to the total variance in Yij,
compared to X1ij, is equal to γ2. All other parameters are fixed at their base values
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intercept when the data-generating process included both a random intercept and

a random slope led to decreased prediction accuracy.

Additionally, the variance of RI values across simulations tended to be lower in

dynamic than static models. The variance in prediction accuracy decreased with each

additional random effect in the model, as well. This speaks to another important

feature of dynamic mixed-effects models that can be identified based on our simulation

results, which is the ability to overcome sampling bias in the training sample to pro-

duce models that perform more consistently in the overall population. By contrast, in

static models, the prediction accuracy was largely dependent on whether the clinics

that comprised the training sample happened to be representative of the overall popu-

lation. In simulations where estimates of β0 and β1 were very different from their true

values due to random sampling, prediction accuracy for static models in the testing

sample tended to be worse (Additional file 1: Figures S7–S9). However, dynamic

models were able to overcome initial sampling bias by rapidly improving model calibra-

tion over time.

Fig. 6 Effect of including clinic-size quintile as a fixed effect on prediction model accuracy. Plots show the
density of values for relative improvement in MAE across 1,000 simulations, with horizontal bars representing
the mean value, for different values of γ, which controls the size of the effect of scaled clinic size, f(Ni), on the
outcome, Yij. All models include clinic-size quintile, Ni

*, as a categorical fixed effect, because Ni
* was defined to

be observed while Ni was defined to be unobserved. Note that the relative contribution of f(Ni) to the total
variance in Yij, compared to X1ij, is equal to γ2. All other parameters are fixed at their base values
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Impact of model misspecification

Model misspecification is a common problem in clinical prediction models, as important

clinical predictors are often unknown, difficult to measure, or nonlinearly related to the

outcome of interest. We simulated model misspecification by including an unknown

patient-level factor, X2ij, in the data-generating process. When this factor was allowed to

influence the outcome (β2 ≠ 0), dynamic BLME models had a decrease in prediction

accuracy; however, they still performed better than static models for all values of β2. More

extreme values of β2 showed a similar pattern (Additional file 1: Figure S10). In short, for

dynamic prediction models, it is still important to be rigorous when selecting covariates

and determining their specification [26], because models that are closest to being correctly

specified will still perform the best. However, the fact that dynamic mixed-effects models

were more accurate in the context of model misspecification suggests that their use may

be a useful strategy in the real world.

Cluster size or volume may be related to outcomes in a number of clinical scenarios,

such as hospital mortality rates for acute myocardial infarction or surgical mortality

rates [15, 19, 27]. While other cluster-level effects can be easily accommodated by ran-

dom intercepts and slopes, volume could theoretically behave differently because it is

directly related to the probability of observing the data in the first place. Larger values

of γ, and thus larger effects of volume, led to worse performance of static BLME

models, while dynamic BLME models showed no deterioration in performance. Import-

antly, static BLME models performed worse than static linear models when γ ≠ 0,

unless fixed effects for clinic-size quintile (Ni
*) were included in the model. To our

knowledge, this finding concerning prediction in novel clusters for static mixed-effects

models has not been previously reported. Upon further examination, in static BLME

Fig. 7 Computational time of static and dynamic models. The mean computational times in seconds for
the static models are shown by the open circles. From bottom to top, the circles represent the linear
model, the BLME model with a random intercept, and the BLME model with a random intercept and a
random slope. The mean computational times for the dynamic linear model, BLME model with a random
intercept, and BLME model with a random intercept and a random slope, are shown by the solid, dashed,
and dotted lines, respectively. All parameters are fixed at their base values
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models, the effect of sampling bias was actually amplified because differences due to

clinic size were incorporated into the model as random effects, with greater bias in the

estimated random effects covariance matrix leading to worse prediction accuracy

(Additional file 1: Figures S11–S12). However, in dynamic BLME models, these initial

biases rapidly diminished over time because the model was continually being calibrated

to the overall population, such that the majority of predictions were unaffected by the

initial biases. In essence, the volume-outcome relationship could be incorporated into

cluster-specific random intercepts over time, even though this was not actually the cor-

rect specification of the data structure. As a result, inclusion of Ni
* was required to im-

prove the accuracy of static BLME models, but not practically necessary in the case of

dynamic BLME models, at least for the cluster sizes that were included in the simula-

tion (i.e. Ni ≥ 10). These results suggest that dynamic mixed-effects models can be an

important tool for prediction in clinical scenarios with volume-outcome relationships,

as they do not necessarily require proper specification of this relationship to yield dra-

matic improvements in prediction accuracy.

We also conducted sensitivity analyses where both the known and unknown patient-

level factors, X1ij and X2ij, had a non-linear relationship with the outcome by adding

squared terms to the data-generating model (Additional file 1: Figures S13–S14). The

results of these sensitivity analyses were similar, in that the gains of prediction accuracy

from using dynamic BLME models were reduced in scenarios with greater degrees of

model misspecification, although for both static and dynamic models the magnitude of

the reduction in RI from misspecification of non-linear terms was somewhat larger

than seen from misspecification of linear terms. However, even in the case of misspeci-

fication of non-linear relationships, there was no scenario identified in which dynamic

BLME models were less accurate than static BLME models.

Interestingly, in cases of extreme model misspecification, there seemed to be a pat-

tern of the dynamic BLME model with both a random intercept and a random slope

having slightly worse prediction accuracy than the dynamic BLME model with only a

random intercept. This result may suggest that dynamic BLME models with more com-

plexity or greater degrees of freedom may perform slightly worse in situations of ex-

treme model misspecification, perhaps because these models are somewhat more likely

to suffer from overfitting of noise in the data. Thus, using more conservative dynamic

models may be prudent in situations where extreme misspecification is more likely.

However, the large gains in accuracy from model updating always exceeded the minor

effects of overfitting, making even complex dynamic models superior to static models.

Impact of the update interval

Previous research on dynamic prediction models have not examined whether the

frequency with which the model is updated would impact the expected gains in predic-

tion accuracy. In many clinical scenarios, updating frequency could be limited by com-

putational constraints or logistical challenges related to data collection, as well as by

time lags between when predictions are made and when the outcomes actually occur.

Fortunately, our results show that gains in prediction accuracy seen with dynamic

mixed-effects models are robust to less frequent updating intervals, with only minor re-

ductions in prediction accuracy at very high values of θ. As a result, dynamic mixed-
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effects models should be feasible in situations where real world constraints limit the

frequency of model updating.

Challenges to using dynamic prediction modeling in practice

Implementation of dynamic mixed-effects models in practice will likely involve many

logistical and analytical challenges. Ideally, prediction models would be integrated into

electronic health record systems, so they will be able to automatically extract covariate

data to make an initial prediction, and then automatically extract outcome data to use

for model updating. Furthermore, in order to accommodate heterogeneities across sites,

the electronic health record will need to either be standardized across all of the sites,

or be compatible enough to allow for communication of data. Additionally, the data

storage and security requirements for large amounts of data across multiple sites will

likely be quite complex. Certain analytic strategies—such as Bayesian dynamic regres-

sion, where posterior distributions are estimated from dynamic priors in a fully online

fashion [14]—could greatly reduce the data storage requirements, and, accordingly, the

data security concerns. These analytic strategies may also help reduce the computa-

tional burden of running dynamic models on increasingly large amounts of data, as

well. However, more simulation work is needed to determine the trade-offs in predic-

tion accuracy that might accompany this estimation approach under certain scenarios.

Finally, there will need to be a concerted effort to communicate the effectiveness of this

approach to the clinical community in order to foster the necessary level of trust to

overcome initial financial and logistical hurdles.

The analytic challenges involved with dynamic prediction modeling are also likely to be

quite complex. Missing data, both for covariates and outcomes, will be an important issue

to resolve, because standard methods, such as multiple imputation [28, 29], may be

difficult to implement in the context of a dynamic system. As a result, efforts to jointly

model the updating process along with the prediction model itself, analogous to methods

for jointly modeling longitudinal and competing risks data [30], may be required. Alterna-

tively, use of missing indicators may be of greater use than with standard models [31],

because these parameters would be allowed to calibrate to the population over time.

However, further studies are needed to answer these questions empirically.

Study limitations

Although our simulation was based on a hypothetical predictor and outcome variable,

we tried wherever possible to mimic situations that might occur when developing and

utilizing a typical clinical prediction model. For instance, we used a log-normal distri-

bution for clinic size, so that there would be a larger number of small clinics than large

clinics, and we generated the training sample to be similar in size and composition to a

large multi-center cohort study. We also excluded some patients from contributing

data to dynamic models, to reflect the loss to follow-up that might occur in clinical

practice. Finally, we examined scenarios where the model was not correctly specified,

which are likely to occur in real-world applications.

Despite these efforts, there were still a number of limitations to our model. For in-

stance, we did not examine scenarios where heterogeneities across clinics were not nor-

mally distributed. It is possible that standard BLME models might not perform as well
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in this scenario, leading to a model that was less calibrated to local conditions, even

after updating. However, research studying the impact of misspecified parameterization

of random effects on prediction accuracy suggests that the standard multivariate nor-

mal assumptions should be reasonably robust [32]. Additionally, we assumed in our

simulation that outcome data that were not available for updating were missing com-

pletely at random, which may not hold in practice. Future studies are needed to deter-

mine whether the prediction accuracy of dynamic prediction models will be worsened

in scenarios where the probability of obtaining outcome data for updating is dependent

on model covariates or, especially, the outcome.

Furthermore, we only tested the simple case of a normally distributed, linear out-

come. It is possible that the relative rate of improvement in model accuracy for dy-

namic models could be different for other types of data, such as binary or count data,

due to differences in the relative efficiency of the models involved. Because GLMMs

are asymptotically consistent regardless of the link function or error distribution used,

we would expect that dynamic mixed-effects models would also show overall improve-

ment compared to static models regardless of the type of data under consideration,

since the process of model updating allows for the accumulation of additional data.

More research, however, will be needed to formally test the relative performance of

dynamic mixed-effects modeling under various conditions for other distributions in the

exponential family, or even non-exponential data, such as survival data.

We attempted to cover a reasonable range of parameter values in our analysis, in-

cluding some parameter values that reflect more extreme cases of model misspecifica-

tion; however, it is possible that our results will not extrapolate to values outside of the

tested ranges. For instance, cluster size was rarely less than ten individuals for our

simulation; however, there is empirical evidence to suggest that mixed-effects models

may perform poorly on such very small clusters when there is a strong volume-

outcome relationship [19]. As a result, we would encourage caution when utilizing

dynamic mixed-effects models in clusters with less than ten individuals when there is a

known strong volume-outcome relationship. Additionally, to reduce computational

burdens, we focused on a simplistic model: a single continuous predictor and a con-

tinuous outcome. Clearly, clinical prediction models in the real world will have multiple

covariates, and many will have more complex outcomes. The exact gains in prediction

accuracy from dynamic prediction modeling will likely vary depending on the particular

structure of the data in question, with more complex models likely requiring more time

and more data to become fully calibrated. Future research is needed to better

characterize the performance of dynamic mixed-effects models as a function of model

complexity. Finally, dynamic prediction modeling in practice will have to deal with a

lag between when predictions are made and when outcomes are observed. For instance,

in models predicting five-year survival in cancer, it could be years before outcomes are

obtained to be included for model updating. It is possible that long lag periods relative

to the frequency of updating will decrease the rate at which prediction accuracy im-

proves. As a result, dynamic mixed-effects models may be less useful for outcomes with

long lag times, especially at smaller clinics or in rapidly changing populations. We

attempted to assess the sensitivity of our results to long lag times by varying the update

interval, θ, and large improvements in prediction accuracy with dynamic BLME models

were still seen even at the highest values of θ. Even with these positive results, though,
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the exact effect of time lags on the performance of dynamic prediction models will

need to be formally addressed in future research.

Conclusions
In conclusion, use of dynamic mixed-effects models led to more accurate predictions in

the overall population compared with static prediction models. The extent of the im-

provement in prediction accuracy that was observed depended on the relative impact

of fixed and random effects on the outcome as well as the degree of model misspecifi-

cation. Nonetheless, dynamic mixed-effects models were uniformly superior to static

models as well as dynamic models with only fixed effects. Gains in prediction accuracy

tended to occur rapidly, leading to improvements at small clinics as well as large

clinics. Dynamic mixed-effects models were also particularly robust to misspecification

of the volume-outcome relationship as well as to variation in the update interval. While

there are many logistical and analytical questions to resolve, dynamic mixed-effects

models appear to be a useful approach for improving the accuracy and generalizability

of clinical prediction models in the context of clustered data.
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