85 research outputs found

    Efficient Stark deceleration of cold polar molecules

    Full text link
    Stark deceleration has been utilized for slowing and trapping several species of neutral, ground-state polar molecules generated in a supersonic beam expansion. Due to the finite physical dimension of the electrode array and practical limitations of the applicable electric fields, only molecules within a specific range of velocities and positions can be efficiently slowed and trapped. These constraints result in a restricted phase space acceptance of the decelerator in directions both transverse and parallel to the molecular beam axis; hence, careful modeling is required for understanding and achieving efficient Stark decelerator operation. We present work on slowing of the hydroxyl radical (OH) elucidating the physics controlling the evolution of the molecular phase space packets both with experimental results and model calculations. From these results we deduce experimental conditions necessary for efficient operation of a Stark decelerator.Comment: 8 pages, 9 figure

    Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant

    Full text link
    We report precise measurements of ground-state, λ\lambda-doublet microwave transitions in the hydroxyl radical molecule (OH). Utilizing slow, cold molecules produced by a Stark decelerator we have improved over the precision of the previous best measurement by twenty-five-fold for the F' = 2 →\to F = 2 transition, yielding (1 667 358 996 ±\pm 4) Hz, and by ten-fold for the F' = 1 →\to F = 1 transition, yielding (1 665 401 803 ±\pm 12) Hz. Comparing these laboratory frequencies to those from OH megamasers in interstellar space will allow a sensitivity of 1 ppm for Δα/α\Delta\alpha/\alpha over ∼\sim101010^{10} years.Comment: This version corrects minor typos in the Zeeman shift discussio

    Cardiac Complications in Acute Ischemic Stroke

    Get PDF
    <p>Introduction: To characterize cardiac complications in acute ischemic stroke (AIS) patients admitted from an urban emergency department (ED).</p> <p>Methods: Retrospective cross-sectional study evaluating AIS patients admitted from the ED within 24 hours of symptom onset who also had an echocardiogram performed within 72 hours of admission.</p> <p>Results: Two hundred AIS patients were identified with an overall in-hospital mortality rate of 8% (n¼ 16). In our cohort, 57 (28.5%) of 200 had an ejection fraction less than 50%, 35 (20.4%) of 171 had ischemic changes on electrocardiogram (ECG), 18 (10.5%) of 171 presented in active atrial fibrillation, 21 (13.0%) of 161 had serum troponin elevation, and 2 (1.1%) of 184 survivors had potentially lethal</p> <p>arrhythmias on telemetry monitoring. Subgroup analysis revealed higher in-hospital mortality rates among those with systolic dysfunction (15.8% versus 4.9%; P ¼ 0.0180), troponin elevation (38.1% versus 3.4%; P , 0.0001), atrial fibrillation on ECG (33.3% versus 3.8%; P ¼ 0.0003), and ischemic changes on ECG (17.1% versus 6.1%; P ¼ 0.0398) compared with those without.</p> <p>Conclusion: A proportion of AIS patients may have cardiac complications. Systolic dysfunction, troponin elevation, atrial fibrillation, or ischemic changes on ECG may be associated with higher inhospital mortality rates. These findings support the adjunctive role of cardiac-monitoring strategies in the acute presentation of AIS. [West J Emerg Med. 2011;12(4):414–420.]</p

    Cross-correlation image analysis for real-time particle tracking

    Full text link
    Accurately measuring translations between images is essential in many fields, including biology, medicine, geography, and physics. Existing methods, including the popular FFT-based cross-correlation, are not suitable for real-time analysis, which is especially vital in feedback control systems. To fill this gap, we introduce a new algorithm which approaches shot-noise limited displacement detection and a GPU-based implementation for real-time image analysis.Comment: 4 pages, 3 figures, submitted to Optics Letter

    Dont Mess with Texas: Getting the Lone Star State to Net-Zero by 2050

    Get PDF
    The world is decarbonizing. Many countries, companies, and financial institutions have committed to cutting their emissions. Decarbonization commitments have been issued by: 136 countries including Canada, China, and the UK, at least 16 U.S. states including New York, Louisiana, and Virginia, and a third of the largest 2,000 publicly traded companies in the world, including Apple, Amazon, and Walmart, and numerous Texas companies like ExxonMobil, American and Southwest Airlines, Baker Hughes, and AT&T.1–9 These decarbonizing countries, states, cities, and companies are Texas's energy customers. If Texas ignores the challenge to decarbonize its economy, it may eventually face the more difficult challenge of selling carbon-intensive products to customers around the world who do not want them. We are already seeing this scenario beginning to play out with France canceling a liquified natural gas deal from Texas gas producers and both U.S. and international automakers announcing shifts to electric vehicles. Proactive net-zero emissions strategies might allow Texas to maintain energy leadership and grow the economy within a rapidly decarbonizing global marketplace.Thankfully, Texas is uniquely positioned to lead the world in the transition to a carbon-neutral energy economy. With the second highest Gross State Product in the US, the Texas economy is on par with countries like Canada, Italy, or Brazil. Thus, Texas's decisions have global implications. Texas also has an abundant resource of low-carbon energy sources to harness and a world-class workforce with technical capabilities to implement solutions at a large-scale quickly and safely. Texas has a promising opportunity to lead the world towards a better energy system in a way that provides significant economic benefits to the state by leveraging our renewable resources, energy industry expertise, and strong manufacturing and export markets for clean electricity, fuels, and products. The world is moving, with or without Texas, but it is likely to move faster--and Texas will be more prosperous--if Texans lead the way.There are many ways to fully decarbonize the Texas economy across all sectors by 2050. In this analysis, we present a Business as Usual (BAU) scenario and four possible pathways to Texas achieving state-wide net-zero emissions by 2050. Figure ES-1 provides a visual comparison of scenario conditions

    Achieving precision and reproducibility for writing patterns of n-alkanethiol self-assembled monolayers with automated nanografting

    Get PDF
    Nanografting is a high-precision approach for scanning probe lithography, which provides unique advantages and capabilities for rapidly writing arrays of nanopatterns of thiol self-assembled monolayers (SAMs). Nanografting is accomplished by force-induced displacement of molecules of a matrix SAM, followed immediately by the self-assembly of n-alkanethiol ink molecules from solution. The feedback loop used to control the atomic force microscope tip position and displacement enables exquisite control of forces applied to the surface, ranging from pico to nanonewtons. To achieve high-resolution writing at the nanoscale, the writing speed, direction, and applied force need to be optimized. There are strategies for programing the tip translation, which will improve the uniformity, alignment, and geometries of nanopatterns written using open-loop feedback control. This article addresses the mechanics of automated nanografting and demonstrates results for various writing strategies when nanografting patterns of n-alkanethiol SAMs. © 2008 Wiley Periodicals, Inc

    High power breakdown testing of a photonic band-gap accelerator structure with elliptical rods

    Get PDF
    An improved single-cell photonic band-gap (PBG) structure with an inner row of elliptical rods (PBG-E) was tested with high power at a 60 Hz repetition rate at X-band (11.424 GHz), achieving a gradient of 128  MV/m at a breakdown probability of 3.6×10-3 per pulse per meter at a pulse length of 150 ns. The tested standing-wave structure was a single high-gradient cell with an inner row of elliptical rods and an outer row of round rods; the elliptical rods reduce the peak surface magnetic field by 20% and reduce the temperature rise of the rods during the pulse by several tens of degrees, while maintaining good damping and suppression of high order modes. When compared with a single-cell standing-wave undamped disk-loaded waveguide structure with the same iris geometry under test at the same conditions, the PBG-E structure yielded the same breakdown rate within measurement error. The PBG-E structure showed a greatly reduced breakdown rate compared with earlier tests of a PBG structure with round rods, presumably due to the reduced magnetic fields at the elliptical rods vs the fields at the round rods, as well as use of an improved testing methodology. A post-testing autopsy of the PBG-E structure showed some damage on the surfaces exposed to the highest surface magnetic and electric fields. Despite these changes in surface appearance, no significant change in the breakdown rate was observed in testing. These results demonstrate that PBG structures, when designed with reduced surface magnetic fields and operated to avoid extremely high pulsed heating, can operate at breakdown probabilities comparable to undamped disk-loaded waveguide structures and are thus viable for high-gradient accelerator applications.United States. Dept. of Energy. High Energy Physics Division (Contract DEFG02-91ER40648

    Impact of pH, Dissolved Inorganic Carbon, and Polyphosphates for the Initial Stages of Water Corrosion of Copper Surfaces Investigated by AFM and NEXAFS

    Get PDF
    Abstract Nanoscale studies at the early stages of the exposure of copper surfaces after systematic treatments in synthesized water solutions can provide useful information about corrosion processes. The corrosion and passivation of copper surfaces as influenced by pH, dissolved inorganic carbon (DIC) and polyphosphate levels were investigated with nanoscale resolution, to gain insight about changes in surface morphology and the composition of adsorbates. Information regarding the surface morphology after chemical treatment was provided by atomic force microscopy (AFM) and the corresponding chemical composition of treated surfaces was obtained with near-edge X-ray absorption fine structure (NEXAFS). Changes in the surface topography of copper samples were readily detected within only 6 to 24 hours of exposure to water solutions. Topographic views of surface changes are presented to compare the growth of adsorbate layers that take place during the evolution of mineral deposits. Slight changes in the pH and concentrations of phosphates in the water samples have a substantial impact on the rate of growth and composition of surface deposits. These studies provide insight on the mechanisms and resulting chemical constituents that lead to surface passivation or corrosion of copper, simulating conditions that occur in water distribution systems

    A candidate for a background independent formulation of M theory

    Full text link
    A class of background independent membrane field theories are studied, and several properties are discovered which suggest that they may play a role in a background independent form of M theory. The bulk kinematics of these theories are described in terms of the conformal blocks of an algebra G on all oriented, finite genus, two-surfaces. The bulk dynamics is described in terms of causal histories in which time evolution is specified by giving amplitudes to certain local changes of the states. Holographic observables are defined which live in finite dimensional states spaces associated with boundaries in spacetime. We show here that the natural observables in these boundary state spaces are, when G is chosen to be Spin(D) or a supersymmetric extension of it, generalizations of matrix model coordinates in D dimensions. In certain cases the bulk dynamics can be chosen so the matrix model dynamics is recoverd for the boundary observables. The bosonic and supersymmetric cases in D=3 and D=9 are studied, and it is shown that the latter is, in a certain limit, related to the matrix model formulation of M theory. This correspondence gives rise to a conjecture concerning a background independent form of M theory in terms of which excitations of the background independent membrane field theory that correspond to strings and D0 branes are identified.Comment: Latex 46 pages, 21 figures, new results included which lead to a modification of the statement of the basic conjecture. Presentation improve
    • …
    corecore