30 research outputs found

    Rodenticide Exposure Among Endangered Kit Foxes Relative to Habitat Use in an Urban Landscape

    Get PDF
    Endangered San Joaquin kit foxes (Vulpes macrotis mutica) inhabiting Bakersfield, California exhibit a high incidence of exposure to anticoagulant rodenticides (ARs). We examined kit fox habitat use in an effort to determine potential sources of AR exposure. Kit fox capture, den, night, and mortality locations were assigned to one of 10 habitat categories. Using all available locations, foxes that tested positive for second generation anticoagulant rodenticides (SGARs) were located more frequently on golf courses while those testing negative were located more frequently in commercial areas. Foxes that tested positive for first generation anticoagulant rodenticides (FGARs) were located more frequently in industrial areas while those testing negative were located more frequently on golf courses. Based on night locations (when foxes are foraging), foxes that tested positive for SGARs were found more frequently in undeveloped and golf course habitats. Foxes that tested positive for FGARs were found more frequently in undeveloped, campus, and industrial habitats. Although available data were not sufficient to identify specific point-sources of AR exposure for foxes, golf courses appeared to be used more frequently by foxes exposed to SGARs. However, sources of exposure likely are abundant and widespread in the urban environment. Based on the results of this study, we recommend (1) investigating patterns of AR use in Bakersfield, (2) conducting an outreach program to emphasize the risk from ARs to kit foxes and other wildlife, and (3) continuing to monitor the incidence and patterns of AR exposure among kit foxes in Bakersfield

    Assessing personality in San Joaquin kit fox in situ: efficacy of field-based experimental methods and implications for conservation management

    Get PDF
    Utilisation of animal personality has potential benefit for conservation management. Due to logistics of robust behavioural evaluation in situ, the majority of studies on wild animals involve taking animals into captivity for testing, potentially compromising results. Three in situ tests for evaluation of boldness in San Joaquin kit fox (Vulpes macrotis mutica) were developed (ENOT: extended novel object test; RNOT: rapid novel object test; TH: trap/handling test). Each test successfully identified variation in boldness within its target age class(es). The TH test was suitable for use across all age classes. Tests were assessed for in situ suitability and for quantity/quality of data yielded. ENOT was rated as requiring high levels of time, cost and labour with greater likelihood of failure. However, it was rated highly for data quantity/quality. The TH test was rated as requiring little time, labour and cost, but yielding lower quality data. RNOT was rated in the middle. Each test had merit and could be adapted to suit project or species constraints. We recommend field-based evaluation of personality, reducing removal of animals from the wild and facilitating routine incorporation of personality assessment into conservation projects

    COYOTE CONTROL TO PROTECT ENDANGERED SAN JOAQUIN KIT FOXES AT THE NAVAL PETROLEUM RESERVES, CALIFORNIA

    Get PDF
    We investigated the effectiveness of a coyote (Canis latrans) control program implemented to increase numbers of endangered San Joaquin kit foxes (Vulpes macrotis mutica) at the Naval Petroleum Reserves in California (NPRC). Between 1980 and 1985, the kit fox population on NPRC declined approximately 66% while coyote abundance apparently increased. Coyote predation was identified as the primary cause of mortality for kit foxes. From 1985 to 1990, the U. S. Department of Energy (DOE) sponsored a program to kill coyotes with the objective being to reduce predation on kit foxes and increase fox numbers. Control methods during the first 4 years were limited to trapping, shooting, and denning. In the last 12 months of the program, aerial gunning was implemented and significantly increased control intensity. This more intensive strategy was not conducted for a sufficient length of time to evaluate its effectiveness. Thus, conclusions regarding coyote control at NPRC are based primarily on the first 4 years of the program. During the 5-year effort, 591 coyotes were killed. Although coyote scent-station indices declined during the period of control, the contribution of the control effort to this decline is unclear. Reproductive rates of female coyotes did not exhibit a compensatory increase as is commonly observed when coyote populations are artificially depressed. After control was initiated, kit fox capture indices and survival rates did not increase, and the proportion of fox deaths due to coyotes did not decrease. The number of coyotes removed annually may not have been sufficient to effectively reduce coyote abundance. Kit fox and coyote population trends both were significantly correlated to lagomorph abundance. Thus, food availability probably was the primary factor influencing the population dynamics of both predators. Control efforts were discontinued pending further consideration of the merits of control and its potential efficacy at NPRC
    corecore