543 research outputs found

    Bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1) alter connexin 43 phosphorylation in MC3T3-E1 Cells

    Get PDF
    BACKGROUND: Bone morphogenetic proteins (BMPs) and transforming growth factor-βs (TGF-βs) are important regulators of bone repair and regeneration. BMP-2 and TGF-β1 have been shown to inhibit gap junctional intercellular communication (GJIC) in MC3T3-E1 cells. Connexin 43 (Cx43) has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. We examined the expression, phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF-β1 to investigate a possible mechanism for the inhibition of GJIC. RESULTS: Northern blot analysis revealed no detectable change in the expression of Cx43 mRNA. Western blot analysis demonstrated no significant change in the expression of total Cx43 protein. However, significantly higher ratios of unphosphorylated vs. phosphorylated forms of Cx43 were detected after BMP-2 or TGF-β1 treatment. Immunofluorescence and cell protein fractionation revealed no detectable change in the localization of Cx43 between the cytosol and plasma membrane. CONCLUSIONS: BMP-2 and TGF-β1 do not alter expression of Cx43 at the mRNA or protein level. BMP-2 and TGF-β1 may inhibit GJIC by decreasing the phosphorylated form of Cx43 in MC3T3-E1 cells

    A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate

    Get PDF
    Serine is a both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical glucose-derived serine synthesis pathway, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, ratelimiting step. Genetic loss of PHGDH is toxic towards PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we use a quantitative high-throughput screen to identify small molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and suggest that one-carbon unit wasting may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.Damon Runyon Cancer Research Foundation (Sally Gordon Fellowship DRG-112-12)United States. Dept. of Defense. Breast Cancer Research Program (Postdoctoral Fellowship BC120208)American Society for Radiation Oncology (Resident Seed Grant RA-2011-1)European Molecular Biology Organization (Long-Term Fellowship)National Institutes of Health (U.S.) (R03 DA034602-01A1, R01 CA129105, R01 CA103866, and R37 AI047389)United States. Department of Defense (W81XWH-14-PRCRP-IA)Alexander and Margaret Stewart Trus

    Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins

    Get PDF
    Chinese hamster ovary (CHO) cells are widely used for the manufacture of biotherapeutics, in part because of their ability to produce proteins with desirable properties, including 'human-like' glycosylation profiles. For biotherapeutics production, control of glycosylation is critical because it has a profound effect on protein function, including half-life and efficacy. Additionally, specific glycan structures may adversely affect their safety profile. For example, the terminal galactose-α-1,3-galactose (α-Gal) antigen can react with circulating anti α-Gal antibodies present in most individuals. It is now understood that murine cell lines, such as SP2 or NSO, typical manufacturing cell lines for biotherapeutics, contain the necessary biosynthetic machinery to produce proteins containing α-Gal epitopes. Furthermore, the majority of adverse clinical events associated with an induced IgE-mediated anaphylaxis response in patients treated with the commercial antibody Erbitux (cetuximab) manufactured in a murine myeloma cell line have been attributed to the presence of the α-Gal moiety. Even so, it is generally accepted that CHO cells lack the biosynthetic machinery to synthesize glycoproteins with α-Gal antigens. Contrary to this assumption, we report here the identification of the CHO ortholog of N-acetyllactosaminide 3-α-galactosyltransferase-1, which is responsible for the synthesis of the α-Gal epitope. We find that the enzyme product of this CHO gene is active and that glycosylated protein products produced in CHO contain the signature α-Gal antigen because of the action of this enzyme. Furthermore, characterizing the commercial therapeutic protein abatacept (Orencia) manufactured in CHO cell lines, we also identified the presence of α-Gal. Finally, we find that the presence of the α-Gal epitope likely arises during clonal selection because different subclonal populations from the same parental cell line differ in their expression of this gene. Although the specific levels of α-Gal required to trigger anaphylaxis reactions are not known and are likely product specific, the fact that humans contain high levels of circulating anti-α-Gal antibodies suggests that minimizing (or at least controlling) the levels of these epitopes during biotherapeutics development may be beneficial to patients. Furthermore, the approaches described here to monitor α-Gal levels may prove useful in industry for the surveillance and control of α-Gal levels during protein manufacture.National Center for Research Resources (U.S.) (Grant P41 RR018501-01

    Functional alpha-1B adrenergic receptors on human epicardial coronary artery endothelial cells

    Get PDF
    Alpha-1-adrenergic receptors (α1-ARs) regulate coronary arterial blood flow by binding catecholamines, norepinephrine (NE), and epinephrine (EPI), causing vasoconstriction when the endothelium is disrupted. Among the three α1-AR subtypes (α1A, α1B, and α1D), the α1D subtype predominates in human epicardial coronary arteries and is functional in human coronary smooth muscle cells (SMCs). However, the presence or function of α1-ARs on human coronary endothelial cells (ECs) is unknown. Here we tested the hypothesis that human epicardial coronary ECs express functional α1-ARs. Cultured human epicardial coronary artery ECs were studied using quantitative real-time reverse transcription polymerase chain reaction, radioligand binding, immunoblot, and 3H-thymidine incorporation. The α1B-subtype messenger ribonucleic acid (mRNA) was predominant in cultured human epicardial coronary ECs (90–95% of total α1-AR mRNA), and total α1-AR binding density in ECs was twice that in coronary SMCs. Functionally, NE and EPI through the α1B subtype activated extracellular signal-regulated kinase (ERK) in ECs, stimulated phosphorylation of EC endothelial nitric oxide synthase (eNOS), and increased deoxyribonucleic acid (DNA) synthesis. These results are the first to demonstrate α1-ARs on human coronary ECs and indicate that the α1B subtype is predominant. Our findings provide another potential mechanism for adverse cardiac effects of drug antagonists that nonselectively inhibit all three α1-AR subtypes

    Bilateral infraorbital nerve blocks decrease postoperative pain but do not reduce time to discharge following outpatient nasal surgery

    Get PDF
    While infraorbital nerve blocks have demonstrated analgesic benefits for pediatric nasal and facial plastic surgery, no studies to date have explored the effect of this regional anesthetic technique on adult postoperative recovery. We designed this study to test the hypothesis that infraorbital nerve blocks combined with a standardized general anesthetic decrease the duration of recovery following outpatient nasal surgery. At a tertiary care university hospital, healthy adult subjects scheduled for outpatient nasal surgery were randomly assigned to receive bilateral infraorbital injections with either 0.5% bupivacaine (Group IOB) or normal saline (Group NS) using an intraoral technique immediately following induction of general anesthesia. All subjects underwent a standardized general anesthetic regimen and were transported to the recovery room following tracheal extubation. The primary outcome was the duration of recovery (minutes) from recovery room admission until actual discharge to home. Secondary outcomes included average and worst pain scores, nausea and vomiting, and supplemental opioid requirements. Forty patients were enrolled. A statistically significant difference in mean [SD] recovery room duration was not observed between Groups IOB and NS (131 [61] min vs 133 [58] min, respectively; P = 0.77). Subjects in Group IOB did experience a reduction in average pain on a 0–100 mm scale (mean [95% confidence interval]) compared to Group NS (−11 [−21 to 0], P = 0.047), but no other comparison of secondary outcomes was statistically significant. When added to a standardized general anesthetic, bilateral IOB do not decrease actual time to discharge following outpatient nasal surgery despite a beneficial effect on postoperative pain

    A Modeling-Derived Hypothesis on Chronicity in Respiratory Diseases: Desensitized Pathogen Recognition Secondary to Hyperactive IRAK/TRAF6 Signaling

    Get PDF
    Several chronic respiratory diseases exhibit hyperactive immune responses in the lung: abundant inflammatory mediators; infiltrating neutrophils, macrophages, lymphocytes and other immune cells; and increased level of proteases. Such diseases include cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and severe/neutrophilic asthma. Paradoxically, patients with these diseases are also susceptible to detrimental bacterial infection and colonization. In this paper, we seek to explain how a positive feedback mechanism via IL-8 could lead to desensitization of epithelial cells to pathogen recognition thus perpetuating bacterial colonization and chronic disease states in the lung. Such insight was obtained from mathematical modeling of the IRAK/TRAF6 signaling module, and is consistent with existing clinical evidence. The potential implications for targeted treatment regimes for these persistent respiratory diseases are explored

    Engineering supported membranes for cell biology

    Get PDF
    Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology

    Corticolimbic Expression of TRPC4 and TRPC5 Channels in the Rodent Brain

    Get PDF
    The canonical transient receptor potential (TRPC) channels are a family of non-selective cation channels that are activated by increases in intracellular Ca2+ and Gq/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6–9 weeks). In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS), pyramidal cell layer of the hippocampus (HIP), dentate gyrus (DG), and ventral subiculum (vSUB). TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2–6 of the prefrontal cortex (PFC), motor cortex (MCx), and somatosensory cortex (SCx). TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca2+and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors

    A Genome-Wide Linkage and Association Scan Reveals Novel Loci for Hypertension and Blood Pressure Traits

    Get PDF
    Hypertension is caused by the interaction of environmental and genetic factors. The condition which is very common, with about 18% of the adult Hong Kong Chinese population and over 50% of older individuals affected, is responsible for considerable morbidity and mortality. To identify genes influencing hypertension and blood pressure, we conducted a combined linkage and association study using over 500,000 single nucleotide polymorphisms (SNPs) genotyped in 328 individuals comprising 111 hypertensive probands and their siblings. Using a family-based association test, we found an association with SNPs on chromosome 5q31.1 (rs6596140; P<9×10−8) for hypertension. One candidate gene, PDC, was replicated, with rs3817586 on 1q31.1 attaining P = 2.5×10−4 and 2.9×10−5 in the within-family tests for DBP and MAP, respectively. We also identified regions of significant linkage for systolic and diastolic blood pressure on chromosomes 2q22 and 5p13, respectively. Further family-based association analysis of the linkage peak on chromosome 5 yielded a significant association (rs1605685, P<7×10−5) for DBP. This is the first combined linkage and association study of hypertension and its related quantitative traits with Chinese ancestry. The associations reported here account for the action of common variants whereas the discovery of linkage regions may point to novel targets for rare variant screening
    corecore