320 research outputs found

    Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion in dogs

    Get PDF
    Postreperfusion regional myocardial dysfunction may be associated with depletion of high energy phosphate compounds during ischemia and with their relatively slow repletion during reperfusion. However, few studies have correlated relatively rapid changes in regional myocardial function (sonomicrometers) and blood flow (microspheres) with high energy phosphate concentrations measured using phosphorus-31 nuclear magnetic resonance spectroscopy in intact large animal models of regional myocardial ischemia. The left anterior descending coronary artery of mongrel dogs was abruptly occluded for 17.1 ± 1.9 minutes and then completely released; measurements were made for an additional 22 minutes. Transmural blood flow decreased from 1.07 ± 0.25 to 0.25 ± 0.10 ml/(min × g) and holosystolic expansion was observed in all dogs (segmental systolic shortening decreased from 9.3 ± 3.7 to −6.3 ± 6.0%). Phosphocreatine (PCr) measured during 4.4 minute sampling intervals decreased to steady state within the first sampling period after occlusion and was 45.9 ± 17.0% of control at the end of the occlusion, whereas beta-adenosine triphosphate (beta-ATP) reached its lowest level early after reperfusion (72.7 ± 13.3% of control). The ratio of PCr to inorganic phosphate (Pi) decreased during the occlusion (3.34 ± 0.75 versus 1.01 ± 0.61) but returned to control level early during reperfusion. The ratio of PCr to beta-ATP also decreased during coronary occlusion (2.16 ± 0.39 versus 1.29 ± 0.39) but did not return to control level during reperfusion.Significant correlations were observed between the intensity of ischemia (reduced blood flow) and reductions in regional contractile function, PCr, beta-ATP, myocardial pH and the increase in Pi during the coronary occlusion. Also during ischemia, there were significant correlations between regional contractile function and both myocardial pH and Pi. PCr returned to control level rapidly after reperfusion (95.9 ± 13.2% of control in less than 5 minutes of reperfusion) whereas beta-ATP recovered only partially after 22 minutes (80.0 ± 17.5% of control). The correlation between the fraction of control beta-ATP and the fraction of control regional function at this time was r = 0.84 (p = 0.017).These results demonstrate metabolic correlates to regional myocardial ischemia in an intact dog model using phosphorus-31 spectroscopy. Additionally during reperfusion, beta-ATP, but not PCr, could be associated with the recovery of regional segmental contractile function

    Imprints of Short Distance Physics On Inflationary Cosmology

    Get PDF
    We analyze the impact of certain modifications to short distance physics on the inflationary perturbation spectrum. For the specific case of power-law inflation, we find distinctive -- and possibly observable -- effects on the spectrum of density perturbations.Comment: Revtex 4, 3 eps figs, 4 page

    Drug safety Africa: An overview of safety pharmacology & toxicology in South Africa.

    Get PDF
    This meeting report is based on presentations given at the first Drug Safety Africa Meeting in Potchefstroom, South Africa from November 20-22, 2018 at the North-West University campus. There were 134 attendees (including 26 speakers and 34 students) from the pharmaceutical industry, academia, regulatory agencies as well as 6 exhibitors. These meeting proceedings are designed to inform the content that was presented in terms of Safety Pharmacology (SP) and Toxicology methods and models that are used by the pharmaceutical industry to characterize the safety profile of novel small chemical or biological molecules. The first part of this report includes an overview of the core battery studies defined by cardiovascular, central nervous system (CNS) and respiratory studies. Approaches to evaluating drug effects on the renal and gastrointestinal systems and murine phenotyping were also discussed. Subsequently, toxicological approaches were presented including standard strategies and options for early identification and characterization of risks associated with a novel therapeutic, the types of toxicology studies conducted and relevance to risk assessment supporting first-in-human (FIH) clinical trials and target organ toxicity. Biopharmaceutical development and principles of immunotoxicology were discussed as well as emerging technologies. An additional poster session was held that included 18 posters on advanced studies and topics by South African researchers, postgraduate students and postdoctoral fellows

    Structural discordance between neogene detachments and frontal Sevier thrusts, central Mormon Mountains, southern Nevada

    Get PDF
    Detailed geologic mapping in the Mormon Mountains of southern Nevada provides significant insight into processes of extensional tectonics developed within older compressional orogens. A newly discovered, WSW-directed low-angle normal fault, the Mormon Peak detachment, juxtaposes the highest levels of the frontal most part of the east-vergent, Mesozoic Sevier thrust belt with autochthonous crystalline basement. Palinspastic analysis suggests that the detachment initially dipped 20–25° to the west and cut discordantly across thrust faults. Nearly complete lateral removal of the hanging wall from the area has exposed a 5 km thick longitudinal cross-section through the thrust belt in the footwall, while highly attenuated remnants of the hanging wall (nowhere more than a few hundred meters thick) structurally veneer the range. The present arched configuration of the detachment resulted in part from progressive “domino-style” rotation of a few degrees while it was active, but is largely due to rotation on younger, structurally lower, basement-penetrating normal faults that initiated at high-angle. The geometry and kinematics of normal faulting in the Mormon Mountains suggest that pre-existing thrust planes are not required for the initiation of low-angle normal faults, and even where closely overlapped by extensional tectonism, need not function as a primary control of detachment geometry. Caution must thus be exercised in interpreting low-angle normal faults of uncertain tectonic heritage such as those seen in the COCORP west-central Utah and BIRP's MOIST deep-reflection profiles. Although thrust fault reactivation has reasonably been shown to be the origin of a very few low-angle normal faults, our results indicate that it may not be as fundamental a component of orogenic architecture as it is now widely perceived to be. We conclude that while in many instances thrust fault reactivation may be both a plausible and attractive hypothesis, it may never be assumed

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages
    corecore