116 research outputs found
Recommended from our members
Chandra Observations of A 1.9 Kpc Separation Double X-Ray Source in A Candidate Dual Active Galactic Nucleus Galaxy At Z=0.16
We report Chandra observations of a double X-ray source in the z = 0.1569 galaxy SDSS J171544.05+600835.7. The galaxy was initially identified as a dual active galactic nucleus (AGN) candidate based on the double-peaked [O III] lambda 5007 emission lines, with a line-of-sight velocity separation of 350 km s(-1), in its Sloan Digital Sky Survey spectrum. We used the Kast Spectrograph at Lick Observatory to obtain two long-slit spectra of the galaxy at two different position angles, which reveal that the two Type 2 AGN emission components have not only a velocity offset, but also a projected spatial offset of 1.9 h(70)(-1) kpc on the sky. Chandra/ACIS observations of two X-ray sources with the same spatial offset and orientation as the optical emission suggest that the galaxy most likely contains Compton-thick dual AGNs, although the observations could also be explained by AGN jets. Deeper X-ray observations that reveal Fe K lines, if present, would distinguish between the two scenarios. The observations of a double X-ray source in SDSS J171544.05+600835.7 are a proof of concept for a new, systematic detection method that selects promising dual AGN candidates from ground-based spectroscopy that exhibits both velocity and spatial offsets in the AGN emission features.W.J. McDonald Postdoctoral FellowshipCollege of Natural SciencesDepartment of Astronomy at the University of Texas at AustinMcDonald ObservatoryU.S. Department of Energy DE-AC02-76SF00515Astronom
Measuring Galaxy Environments with Deep Redshift Surveys
We study the applicability of several galaxy environment measures
(n^th-nearest-neighbor distance, counts in an aperture, and Voronoi volume)
within deep redshift surveys. Mock galaxy catalogs are employed to mimic
representative photometric and spectroscopic surveys at high redshift (z ~ 1).
We investigate the effects of survey edges, redshift precision, redshift-space
distortions, and target selection upon each environment measure. We find that
even optimistic photometric redshift errors (\sigma_z = 0.02) smear out the
line-of-sight galaxy distribution irretrievably on small scales; this
significantly limits the application of photometric redshift surveys to
environment studies. Edges and holes in a survey field dramatically affect the
estimation of environment, with the impact of edge effects depending upon the
adopted environment measure. These edge effects considerably limit the
usefulness of smaller survey fields (e.g. the GOODS fields) for studies of
galaxy environment. In even the poorest groups and clusters, redshift-space
distortions limit the effectiveness of each environment statistic; measuring
density in projection (e.g. using counts in a cylindrical aperture or a
projected n^th-nearest-neighbor distance measure) significantly improves the
accuracy of measures in such over-dense environments. For the DEEP2 Galaxy
Redshift Survey, we conclude that among the environment estimators tested the
projected n^th-nearest-neighbor distance measure provides the most accurate
estimate of local galaxy density over a continuous and broad range of scales.Comment: 17 pages including 16 figures, accepted to Ap
Kiloparsec-scale Spatial Offsets in Double-peaked Narrow-line Active Galactic Nuclei. I. Markers for Selection of Compelling Dual Active Galactic Nucleus Candidates
Merger-remnant galaxies with kpc-scale separation dual active galactic nuclei
(AGNs) should be widespread as a consequence of galaxy mergers and triggered
gas accretion onto supermassive black holes, yet very few dual AGNs have been
observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan
Digital Sky Survey are plausible dual AGN candidates, but their double-peaked
profiles could also be the result of gas kinematics or AGN-driven outflows and
jets on small or large scales. To help distinguish between these scenarios, we
have obtained spatial profiles of the AGN emission via follow-up long-slit
spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 < z < 0.36
using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit
double AGN emission components with ~kpc projected spatial separations on the
sky, which suggests that they are produced by kpc-scale dual AGNs or kpc-scale
outflows, jets, or rotating gaseous disks. In addition, we find that the
subsample (58%) of the objects with spatially compact emission components may
be preferentially produced by dual AGNs, while the subsample (42%) with
spatially extended emission components may be preferentially produced by AGN
outflows. We also find that for 32% of the sample the two AGN emission
components are preferentially aligned with the host galaxy major axis, as
expected for dual AGNs orbiting in the host galaxy potential. Our results both
narrow the list of possible physical mechanisms producing the double AGN
components, and suggest several observational criteria for selecting the most
promising dual AGN candidates from the full sample of double-peaked narrow-line
AGNs. Using these criteria, we determine the 17 most compelling dual AGN
candidates in our sample.Comment: 12 pages, 8 figures, published in ApJ. Modified from original version
to reflect referee's comment
Groups of Galaxies in AEGIS: The 200 ksec Chandra Extended X-ray Source catalogue
We present the discovery of seven X-ray emitting groups of galaxies selected
as extended X-ray sources in the 200 ksec Chandra coverage of the
All-wavelength Extended Groth Strip International Survey (AEGIS). In addition,
we report on AGN activity associated to these systems. Using the DEEP2 Galaxy
Redshift Survey coverage, we identify optical counterparts and determine
velocity dispersions. In particular, we find three massive high-redshift groups
at z>0.7, one of which is at z=1.13, the first X-ray detections of
spectroscopically selected DEEP2 groups. We also present a first look at the
the L_X-T, L_X-sigma, and sigma-T scaling relations for high-redshift massive
groups. We find that the properties of these X-ray selected systems agree well
with the scaling relations of similar systems at low redshift, although there
are X-ray undetected groups in the DEEP2 catalogue with similar velocity
dispersions. The other three X-ray groups with identified redshifts are
associated with lower mass groups at z~0.07 and together form part of a large
structure or "supergroup" in the southern portion of the AEGIS field. All of
the low-redshift systems are centred on massive elliptical galaxies, and all of
the high-redshift groups have likely central galaxies or galaxy pairs. All of
the central group galaxies host X-ray point sources, radio sources, and/or show
optical AGN emission. Particularly interesting examples of central AGN activity
include a bent-double radio source plus X-ray point source at the center of a
group at z=0.74, extended radio and double X-ray point sources associated to
the central galaxy in the lowest-redshift group at z=0.066, and a bright green
valley galaxy (part of a pair) in the z=1.13 group which shows optical AGN
emission lines.Comment: accepted to MNRAS, 15 pages, 11 figures, for version with full
resolution figures see http://www.ucolick.org/~tesla/aegis_groups.ps.g
Dependence of Galaxy Quenching on Halo Mass and Distance from its Centre
We study the dependence of star-formation quenching on galaxy mass and
environment, in the SDSS (z~0.1) and the AEGIS (z~1). It is crucial that we
define quenching by low star-formation rate rather than by red colour, given
that one third of the red galaxies are star forming. We address stellar mass
M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to
the halo centre D. The fraction of quenched galaxies appears more strongly
correlated with Mh at fixed M* than with M* at fixed Mh, while for satellites
quenching also depends on D. We present the M*-Mh relation for centrals at z~1.
At z~1, the dependence of quenching on M* at fixed Mh is somewhat more
pronounced than at z~0, but the quenched fraction is low (10%) and the haloes
are less massive. For satellites, M*-dependent quenching is noticeable at high
D, suggesting a quenching dependence on sub-halo mass for recently captured
satellites. At small D, where satellites likely fell in more than a few Gyr
ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of
quenching is consistent with theoretical wisdom where virial shock heating in
massive haloes shuts down accretion and triggers ram-pressure stripping,
causing quenching. The interpretation of deltaN is complicated by the fact that
it depends on the number of observed group members compared to N, motivating
the use of D as a better measure of local environment.Comment: 23 pages, 13 figures, accepted by MNRA
Absence of Evidence Is Not Evidence of Absence: The Color-Density Relation at Fixed Stellar Mass Persists to z ~ 1
We use data drawn from the DEEP2 Galaxy Redshift Survey to investigate the
relationship between local galaxy density, stellar mass, and rest-frame galaxy
color. At z ~ 0.9, we find that the shape of the stellar mass function at the
high-mass (log (M*/Msun) > 10.1) end depends on the local environment, with
high-density regions favoring more massive systems. Accounting for this stellar
mass-environment relation (i.e., working at fixed stellar mass), we find a
significant color-density relation for galaxies with 10.6 < log(M*/Msun) < 11.1
and 0.75 < z < 0.95. This result is shown to be robust to variations in the
sample selection and to extend to even lower masses (down to log(M*/Msun) ~
10.4). We conclude by discussing our results in comparison to recent works in
the literature, which report no significant correlation between galaxy
properties and environment at fixed stellar mass for the same redshift and
stellar mass domain. The non-detection of environmental dependence found in
other data sets is largely attributable to their smaller samples size and lower
sampling density, as well as systematic effects such as inaccurate redshifts
and biased analysis techniques. Ultimately, our results based on DEEP2 data
illustrate that the evolutionary state of a galaxy at z ~ 1 is not exclusively
determined by the stellar mass of the galaxy. Instead, we show that local
environment appears to play a distinct role in the transformation of galaxy
properties at z > 1.Comment: 10 pages, 5 Figures; Accepted for publication in MNRA
- …