28 research outputs found
Pathogenic CD8 T Cells in Multiple Sclerosis and Its Experimental Models
A growing body of evidence suggests that autoreactive CD8 T cells contribute to the disease process in multiple sclerosis (MS). Lymphocytes in MS plaques are biased toward the CD8 lineage, and MS patients harbor CD8 T cells specific for multiple central nervous system (CNS) antigens. Currently, there are relatively few experimental model systems available to study these pathogenic CD8 T cells in vivo. However, the few studies that have been done characterizing the mechanisms used by CD8 T cells to induce CNS autoimmunity indicate that several of the paradigms of how CD4 T cells mediate CNS autoimmunity do not hold true for CD8 T cells or for patients with MS. Thus, myelin-specific CD4 T cells are likely to be one of several important mechanisms that drive CNS disease in MS patients. The focus of this review is to highlight the current models of pathogenic CNS-reactive CD8 T cells and the molecular mechanisms these lymphocytes use when causing CNS inflammation and damage. Understanding how CNS-reactive CD8 T cells escape tolerance induction and induce CNS autoimmunity is critical to our ability to propose and test new therapies for MS
Hydrophobic CDR3 residues promote the development of self-reactive T cells
Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3β robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the β-chain variable region (V[subscript β]) family present in the TCR or the length of the CDR3β. An index based on these findings distinguished V[subscript β]2[superscript +], V[subscript β]6[superscript +] and V[subscript β]8.2[superscript +] regulatory T cells from conventional T cells and also distinguished CD4[superscript +] T cells selected by the major histocompatibility complex (MHC) class II molecule I-A[superscript g7] (associated with the development of type 1 diabetes in NOD mice) from those selected by a non–autoimmunity-promoting MHC class II molecule I-Ab. Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires
Affinity for self antigen selects T<sub>reg</sub> cells with distinct functional properties
The manner in which regulatory T cells (Treg cells) control lymphocyte homeostasis is not fully understood. We identified two Treg cell populations with differing degrees of self-reactivity and distinct regulatory functions. We found that GITR(hi)PD-1(hi)CD25(hi) (Triple(hi)) Treg cells were highly self-reactive and controlled lympho-proliferation in peripheral lymph nodes. GITR(lo)PD-1(lo)CD25(lo) (Triple(lo)) Treg cells were less self-reactive and limited the development of colitis by promoting the conversion of CD4(+) Tconv cells into induced Treg cells (iTreg cells). Although Foxp3-deficient (Scurfy) mice lacked Treg cells, they contained Triple(hi)-like and Triple(lo)-like CD4(+) T cells zsuper< T cells infiltrated the skin, whereas Scurfy Triple(lo)CD4(+) T cells induced colitis and wasting disease. These findings indicate that the affinity of the T cell antigen receptor for self antigen drives the differentiation of Treg cells into distinct subsets with non-overlapping regulatory activities
Effect of CDR3 Sequences and Distal V Gene Residues in Regulating TCR–MHC Contacts and Ligand Specificity
Abstract
The mature T cell repertoire has the ability to orchestrate immunity to a wide range of potential pathogen challenges. This ability stems from thymic development producing individual T cell clonotypes that express TCRs with unique patterns of Ag reactivity. The Ag specificity of TCRs is created from the combinatorial pairing of one of a set of germline encoded TCR Vα and Vβ gene segments with randomly created CDR3 sequences. How the amalgamation of germline encoded and randomly created TCR sequences results in Ag receptors with unique patterns of ligand specificity is not fully understood. Using cellular, biophysical, and structural analyses, we show that CDR3α residues can modulate the geometry in which TCRs bind peptide–MHC (pMHC), governing whether and how germline encoded TCR Vα and Vβ residues interact with MHC. In addition, a CDR1α residue that is positioned distal to the TCR–pMHC binding interface is shown to contribute to the peptide specificity of T cells. These findings demonstrate that the specificity of individual T cell clonotypes arises not only from TCR residues that create direct contacts with the pMHC, but also from a collection of indirect effects that modulate how TCR residues are used to bind pMHC.</jats:p
