49 research outputs found

    Differences in adolescent activity and dietary behaviors across home, school, and other locations warrant location-specific intervention approaches

    Get PDF
    Background Investigation of physical activity and dietary behaviors across locations can inform “setting-specific” health behavior interventions and improve understanding of contextual vulnerabilities to poor health. This study examined how physical activity, sedentary time, and dietary behaviors differed across home, school, and other locations in young adolescents. Methods Participants were adolescents aged 12–16 years from the Baltimore-Washington, DC and the Seattle areas from a larger cross-sectional study. Participants (n = 472) wore an accelerometer and Global Positioning Systems (GPS) tracker (Mean days = 5.12, SD = 1.62) to collect location-based physical activity and sedentary data. Participants (n = 789) completed 24-h dietary recalls to assess dietary behaviors and eating locations. Spatial analyses were performed to classify daily physical activity, sedentary time patterns, and dietary behaviors by location, categorized as home, school, and “other” locations. Results Adolescents were least physically active at home (2.5 min/hour of wear time) and school (2.9 min/hour of wear time) compared to “other” locations (5.9 min/hour of wear time). Participants spent a slightly greater proportion of wear time in sedentary time when at school (41 min/hour of wear time) than at home (39 min/hour of wear time), and time in bouts lasting ≥30 min (10 min/hour of wear time) and mean sedentary bout duration (5 min) were highest at school. About 61% of daily energy intake occurred at home, 25% at school, and 14% at “other” locations. Proportionately to energy intake, daily added sugar intake (5 g/100 kcal), fruits and vegetables (0.16 servings/100 kcal), high calorie beverages (0.09 beverages/100 kcal), whole grains (0.04 servings/100 kcal), grams of fiber (0.65 g/100 kcal), and calories of fat (33 kcal/100 kcal) and saturated fat (12 kcal/100 kcal) consumed were nutritionally least favorable at “other” locations. Daily sweet and savory snacks consumed was highest at school (0.14 snacks/100 kcal). Conclusions Adolescents’ health behaviors differed based on the location/environment they were in. Although dietary behaviors were generally more favorable in the home and school locations, physical activity was generally low and sedentary time was higher in these locations. Health behavior interventions that address the multiple locations in which adolescents spend time and use location-specific behavior change strategies should be explored to optimize health behaviors in each location

    Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction

    Get PDF
    Aerosol effects on micro/macrophysical properties of marine stratocumulus clouds over the western North Atlantic Ocean (WNAO) are investigated using in situ measurements and large-eddy simulations (LES) for two cold-air outbreak (CAO) cases (28 February and 1 March 2020) during the Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE). The LES is able to reproduce the vertical profiles of liquid water content (LWC), effective radius reff and cloud droplet number concentration Nc from fast cloud droplet probe (FCDP) in situ measurements for both cases. Furthermore, we show that aerosols affect cloud properties (Nc, reff, and LWC) via the prescribed bulk hygroscopicity of aerosols (¯κ) and aerosol size distribution characteristics. Nc, reff, and liquid water path (LWP) are positively correlated to ¯κ and aerosol number concentration (Na) while cloud fractional cover (CFC) is insensitive to ¯κ and aerosol size distributions for the two cases. The realistic changes to aerosol size distribution (number concentration, width, and the geometrical diameter) with the same meteorology state allow us to investigate aerosol effects on cloud properties without meteorological feedback. We also use the LES results to evaluate cloud properties from two reanalysis products, ERA5 and MERRA-2. Compared to LES, the ERA5 is able to capture the time evolution of LWP and total cloud coverage within the study domain during both CAO cases while MERRA-2 underestimates them

    Spatially-coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: The NASA ACTIVATE dataset

    Get PDF
    The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol-cloud-meteorology interactions. An HU-25 Falcon and King Air conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes

    Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD Working Groups

    Get PDF
    Objective Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium is ideally positioned to investigate structural brain alterations across these disorders. Methods Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. We examined subcortical volume, cortical thickness and surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models adjusting for age, sex and site (and ICV for subcortical and surface area measures). Results We found no shared alterations among all three disorders, while shared alterations between any two disorders did not survive multiple comparisons correction. Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other clinical groups. No OCD-specific alterations across different age-groups and surface area alterations among all disorders in childhood and adulthood were observed. Conclusion Our findings suggest robust but subtle alterations across different age-groups among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal alterations in children and adolescents, and ASD-specific cortical thickness alterations in the frontal cortex in adults support previous work emphasizing neurodevelopmental alterations in these disorders

    Unsaturated Nitriles:  Stereoselective MgO Eliminations

    No full text

    Preparation and Reactivity of the Versatile Uranium(IV) Imido Complexes U(NAr)Cl<sub>2</sub>(R<sub>2</sub>bpy)<sub>2</sub> (R = Me, <sup><i>t</i></sup>Bu) and U(NAr)Cl<sub>2</sub>(tppo)<sub>3</sub>

    No full text
    Uranium tetrachloride undergoes facile reactions with 4,4′-dialkyl-2,2′-bipyridine, resulting in the generation of UCl<sub>4</sub>(R<sub>2</sub>bpy)<sub>2</sub>, R = Me, <sup><i>t</i></sup>Bu. These precursors, as well as the known UCl<sub>4</sub>(tppo)<sub>2</sub> (tppo = triphenylphosphine oxide), react with 2 equiv of lithium 2,6-di-isopropylphenylamide to provide the versatile uranium­(IV) imido complexes, U­(NDipp)­Cl<sub>2</sub>(L)<sub><i>n</i></sub> (L = R<sub>2</sub>bpy, <i>n</i> = 2; L = tppo, <i>n</i> = 3). Interestingly, U­(NDipp)­Cl<sub>2</sub>(R<sub>2</sub>bpy)<sub>2</sub> can be used to generate the uranium­(V) and uranium­(VI) bisimido compounds, U­(NDipp)<sub>2</sub>­X­(R<sub>2</sub>bpy)<sub>2</sub>, X = Cl, Br, I, and U­(NDipp)<sub>2­</sub>I<sub>2</sub>(<sup><i>t</i></sup>Bu<sub>2</sub>bpy), which establishes these uranium­(IV) precursors as potential intermediates in the syntheses of high-valent bis­(imido) complexes from UCl<sub>4</sub>. The monoimido species also react with 4-methylmorpholine-N-oxide to yield uranium­(VI) oxo-imido products, U­(NDipp)­(O)­Cl<sub>2</sub>(L)<sub><i>n</i></sub> (L = <sup><i>t</i></sup>Bu<sub>2</sub>bpy, <i>n</i> = 1; L = tppo, <i>n</i> = 2). The aforementioned molecules have been characterized by a combination of NMR spectroscopy, X-ray crystallography, and elemental analysis. The chemical reactivity studies presented herein demonstrate that Lewis base adducts of uranium tetrachloride function as excellent sources of U­(IV), U­(V), and U­(VI) imido species

    Preparation and Reactivity of the Versatile Uranium(IV) Imido Complexes U(NAr)Cl<sub>2</sub>(R<sub>2</sub>bpy)<sub>2</sub> (R = Me, <sup><i>t</i></sup>Bu) and U(NAr)Cl<sub>2</sub>(tppo)<sub>3</sub>

    No full text
    Uranium tetrachloride undergoes facile reactions with 4,4′-dialkyl-2,2′-bipyridine, resulting in the generation of UCl<sub>4</sub>(R<sub>2</sub>bpy)<sub>2</sub>, R = Me, <sup><i>t</i></sup>Bu. These precursors, as well as the known UCl<sub>4</sub>(tppo)<sub>2</sub> (tppo = triphenylphosphine oxide), react with 2 equiv of lithium 2,6-di-isopropylphenylamide to provide the versatile uranium­(IV) imido complexes, U­(NDipp)­Cl<sub>2</sub>(L)<sub><i>n</i></sub> (L = R<sub>2</sub>bpy, <i>n</i> = 2; L = tppo, <i>n</i> = 3). Interestingly, U­(NDipp)­Cl<sub>2</sub>(R<sub>2</sub>bpy)<sub>2</sub> can be used to generate the uranium­(V) and uranium­(VI) bisimido compounds, U­(NDipp)<sub>2</sub>­X­(R<sub>2</sub>bpy)<sub>2</sub>, X = Cl, Br, I, and U­(NDipp)<sub>2­</sub>I<sub>2</sub>(<sup><i>t</i></sup>Bu<sub>2</sub>bpy), which establishes these uranium­(IV) precursors as potential intermediates in the syntheses of high-valent bis­(imido) complexes from UCl<sub>4</sub>. The monoimido species also react with 4-methylmorpholine-N-oxide to yield uranium­(VI) oxo-imido products, U­(NDipp)­(O)­Cl<sub>2</sub>(L)<sub><i>n</i></sub> (L = <sup><i>t</i></sup>Bu<sub>2</sub>bpy, <i>n</i> = 1; L = tppo, <i>n</i> = 2). The aforementioned molecules have been characterized by a combination of NMR spectroscopy, X-ray crystallography, and elemental analysis. The chemical reactivity studies presented herein demonstrate that Lewis base adducts of uranium tetrachloride function as excellent sources of U­(IV), U­(V), and U­(VI) imido species

    EDP-938, a novel nucleoprotein inhibitor of respiratory syncytial virus, demonstrates potent antiviral activities in vitro and in a non-human primate model.

    No full text
    EDP-938 is a novel non-fusion replication inhibitor of respiratory syncytial virus (RSV). It is highly active against all RSV-A and B laboratory strains and clinical isolates tested in vitro in various cell lines and assays, with half-maximal effective concentrations (EC50s) of 21, 23 and 64 nM against Long (A), M37 (A) and VR-955 (B) strains, respectively, in the primary human bronchial epithelial cells (HBECs). EDP-938 inhibits RSV at a post-entry replication step of the viral life cycle as confirmed by time-of-addition study, and the activity appears to be mediated by viral nucleoprotein (N). In vitro resistance studies suggest that EDP-938 presents a higher barrier to resistance compared to viral fusion or non-nucleoside L polymerase inhibitors with no cross-resistance observed. Combinations of EDP-938 with other classes of RSV inhibitors lead to synergistic antiviral activity in vitro. Finally, EDP-938 has also been shown to be efficacious in vivo in a non-human primate model of RSV infection
    corecore