661 research outputs found

    Evaluation of Approaches for Mapping Tidal Wetlands of the Chesapeake and Delaware Bays

    Full text link
    The spatial extent and vegetation characteristics of tidal wetlands and their change are among the biggest unknowns and largest sources of uncertainty in modeling ecosystem processes and services at the land-ocean interface. Using a combination of moderate-high spatial resolution

    An Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation of the ICESat-2 Mission

    Get PDF
    The Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission has been selected by NASA as a Decadal Survey mission, to be launched in 2016. Mission objectives are to measure land ice elevation, sea ice freeboard/ thickness and changes in these variables and to collect measurements over vegetation that will facilitate determination of canopy height, with an accuracy that will allow prediction of future environmental changes and estimation of sea-level rise. The importance of the ICESat-2 project in estimation of biomass and carbon levels has increased substantially, following the recent cancellation of all other planned NASA missions with vegetation-surveying lidars. Two innovative components will characterize the ICESat-2 lidar: (1) Collection of elevation data by a multi-beam system and (2) application of micropulse lidar (photon counting) technology. A micropulse photon-counting altimeter yields clouds of discrete points, which result from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of returned points to reflectors of interest including canopy and ground in forested areas. The objective of this paper is to derive and validate an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2-type data. Data are based on airborne observations with a Sigma Space micropulse lidar and vary with respect to signal strength, noise levels, photon sampling options and other properties. A mathematical algorithm is developed, using spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors and geostatistical classification parameters and hyperparameters. Validation shows that the algorithm works very well and that ground and canopy elevation, and hence canopy height, can be expected to be observable with a high accuracy during the ICESat-2 mission. A result relevant for instrument design is that even the two weaker beam classes considered can be expected to yield useful results for vegetation measurements (93.01-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp9) and 72.85% - 98.68% for 0.48 msp (msp4)). Resampling options affect results more than noise levels. The algorithm derived here is generally applicable for analysis of micropulse lidar altimeter data collected over forested areas as well as other surfaces, including land ice, sea ice and land surfaces

    The trough-system algorithm and its application to spatial modeling of Greenland subglacial topography

    Get PDF
    This is the published version. Copyright 2014 Herzfeld et al.Dynamic ice-sheet models are used to assess the contribution of mass loss from the Greenland ice sheet to sea-level rise. Mass transfer from ice sheet to ocean is in a large part through outlet glaciers. Bed topography plays an important role in ice dynamics, since the acceleration from the slow-moving inland ice to an ice stream is in many cases caused by the existence of a subglacial trough or trough system. Problems are that most subglacial troughs are features of a scale not resolved in most ice-sheet models and that radar measurements of subglacial topography do not always reach the bottoms of narrow troughs. The trough-system algorithm introduced here employs mathematical morphology and algebraic topology to correctly represent subscale features in a topographic generalization, so the effects of troughs on ice flow are retained in ice-dynamic models. The algorithm is applied to derive a spatial elevation model of Greenland subglacial topography, integrating recently collected radar measurements (CReSIS data) of the Jakobshavn Isbræ, Helheim, Kangerdlussuaq and Petermann glacier regions. The resultant JakHelKanPet digital elevation model has been applied in dynamic ice-sheet modeling and sea-level-rise assessment

    Advancing the Application of Design of Experiments (DOE) to Synthetic Theater Operations Research Model (STORM) Data

    Get PDF
    NPS NRP Project PosterThe Navy uses simulation-based campaign analysis to help measure risk for investment options for how best to equip, organize, supply, maintain, train, and employ our naval forces. The Synthetic Theater Operations Research Model (STORM) is a stochastic simulation model used to support campaign analysis by the U.S. Navy, Marine Corps, and Air Force. Building, testing, running, and analyzing campaign scenarios in STORM can be a complex, time-consuming process. The goal of this research is to apply Design Of Experiment (DOE) methods in the selection and creation of Design Points (DPs) to minimize the number of modeling runs required for meaningful comparisons. Another objective is to understand how best DOE methods can complement traditional baseline and excursion modeling. In addition to regular reviews, the research deliverables will include: (1) a final brief and/or technical report, in addition to student theses (if applicable); (2) all findings, methods, and data used in the study; and (3) appropriate conference or journal papers related to this research.N8 - Integration of Capabilities & ResourcesThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Advancing the Application of Design of Experiments (DOE) to Synthetic Theater Operations Research Model (STORM) Data

    Get PDF
    NPS NRP Technical ReportThe Navy uses simulation-based campaign analysis to help measure risk for investment options for how best to equip, organize, supply, maintain, train, and employ our naval forces. The Synthetic Theater Operations Research Model (STORM) is a stochastic simulation model used to support campaign analysis by the U.S. Navy, Marine Corps, and Air Force. Building, testing, running, and analyzing campaign scenarios in STORM can be a complex, time-consuming process. The goal of this research is to apply Design Of Experiment (DOE) methods in the selection and creation of Design Points (DPs) to minimize the number of modeling runs required for meaningful comparisons. Another objective is to understand how best DOE methods can complement traditional baseline and excursion modeling. In addition to regular reviews, the research deliverables will include: (1) a final brief and/or technical report, in addition to student theses (if applicable); (2) all findings, methods, and data used in the study; and (3) appropriate conference or journal papers related to this research.N8 - Integration of Capabilities & ResourcesThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Advancing the Application of Design of Experiments (DOE) to Synthetic Theater Operations Research Model (STORM) Data

    Get PDF
    NPS NRP Executive SummaryThe Navy uses simulation-based campaign analysis to help measure risk for investment options for how best to equip, organize, supply, maintain, train, and employ our naval forces. The Synthetic Theater Operations Research Model (STORM) is a stochastic simulation model used to support campaign analysis by the U.S. Navy, Marine Corps, and Air Force. Building, testing, running, and analyzing campaign scenarios in STORM can be a complex, time-consuming process. The goal of this research is to apply Design Of Experiment (DOE) methods in the selection and creation of Design Points (DPs) to minimize the number of modeling runs required for meaningful comparisons. Another objective is to understand how best DOE methods can complement traditional baseline and excursion modeling. In addition to regular reviews, the research deliverables will include: (1) a final brief and/or technical report, in addition to student theses (if applicable); (2) all findings, methods, and data used in the study; and (3) appropriate conference or journal papers related to this research.N8 - Integration of Capabilities & ResourcesThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.
    corecore