9,207 research outputs found
Application of a panel method to wake-vortex/wing interaction and comparison with experimental data
The ability of the Vortex Separation AEROdynamics (VSAERO) program to calculate aerodynamic loads on wings due to interaction with free vortices was studied. The loads were calculated for various positions of a downstream following wing relative to an upstream vortex-generating wing. Calculated vortex-induced span loads, rolling-moment coefficients, and lift coefficients on the following wing were compared with experimental results of McMillan et al. and El-Ramly et al. Comparisons of calculated and experimental vortex tangential velocities were also made
Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.
UnlabelledNitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis.ImportanceBacterial nitric oxide (NO) signaling via heme-nitric oxide/oxygen binding (H-NOX) proteins regulates biofilm formation, playing an important role in protecting bacteria from oxidative stress and other environmental stresses. Biofilms are also an important part of symbiosis, allowing the organism to remain in a nutrient-rich environment. In this study, we show that in Silicibacter sp. strain TrichCH4B, NO mediates symbiosis with the alga Trichodesmium erythraeum, a major marine diazotroph. In addition, Silicibacter sp. TrichCH4B is the first characterized bacteria to harbor both the NOS and H-NOX proteins, making it uniquely capable of both synthesizing and sensing NO, analogous to mammalian NO signaling. Our study expands current understanding of the role of NO in bacterial signaling, providing a novel role for NO in bacterial communication and symbiosis
Protostellar Feedback Processes and the Mass of the First Stars
We review theoretical models of Population III.1 star formation, focusing on
the protostellar feedback processes that are expected to terminate accretion
and thus set the mass of these stars. We discuss how dark matter annihilation
may modify this standard feedback scenario. Then, under the assumption that
dark matter annihilation is unimportant, we predict the mass of stars forming
in 12 cosmological minihalos produced in independent numerical simulations.
This allows us to make a simple estimate of the Pop III.1 initial mass function
and how it may evolve with redshift.Comment: 6 pages, Proceedings of 'The First Stars and Galaxies: Challenges for
the Next Decade", Austin, TX, March 8-11, 201
The First Day of Class: How Should Instructors Use Class Time?
Students and instructors rated first-day class satisfaction and completed scales assessing the time that instructors spent on introductions, course policies, procedures, and course content. For students, interest on or before the first day, and for faculty, excitement and confidence in students’ abilities, strongly predicted satisfaction on the first day. Student and instructor satisfaction also were positively associated with time devoted to hows and whys, content, and introductions. Findings contradict previous empirical studies of student satisfaction but are consistent with faculty development recommendations
Analysis of Economic Depreciation for Multi-Family Property
This paper uses a hedonic pricing model and National Council of Real Estate Investment Fiduciaries data to estimate economic depreciation for multi-family real estate. The findings indicate that investment grade multi-family housing depreciates approximately 2.7% per year in real terms based on total property value. This implies a depreciation rate for just the building of about 3.25% per year. With 2% inflation, this suggests a nominal depreciation rate of about 5.25% per year. Converted into a straight-line depreciation rate that has the same present value, this suggests a depreciable life of 30.5 years - as compared to 27.5 years allowed under the current tax laws. Thus, these laws are slightly favorable to multi-family properties by providing a tax depreciation rate that exceeds economic depreciation, which is in part due to inflation that has been less than expected during the past decade.
Redshift-Independent Distances to Type Ia Supernovae
We describe a procedure for accurately determining luminosity distances to
Type Ia supernovae (SNe Ia) without knowledge of redshift. This procedure,
which may be used as an extension of any of the various distance determination
methods currently in use, is based on marginalizing over redshift, removing the
requirement of knowing a priori. We demonstrate that the Hubble diagram
scatter of distances measured with this technique is approximately equal to
that of distances derived from conventional redshift-specific methods for a set
of 60 nearby SNe Ia. This indicates that accurate distances for cosmological
SNe Ia may be determined without the requirement of spectroscopic redshifts,
which are typically the limiting factor for the number of SNe that modern
surveys can collect. Removing this limitation would greatly increase the number
of SNe for which current and future SN surveys will be able to accurately
measure distance. The method may also be able to be used for high- SNe Ia to
determine cosmological density parameters without redshift information.Comment: 12 pages, 3 figures, accepted for publication in Astrophysical
Journal Letter
Testing use of mitochondrial COI sequences for the identification and phylogenetic analysis of New Zealand caddisflies (Trichoptera)
We tested the hypothesis that cytochrome c oxidase subunit 1 (COI) sequences would successfully discriminate recognised species of New Zealand caddisflies. We further examined whether phylogenetic analyses, based on the COI locus, could recover currently recognised superfamilies and suborders. COI sequences were obtained from 105 individuals representing 61 species and all 16 families of Trichoptera known from New Zealand. No sequence sharing was observed between members of different species, and congeneric species showed from 2.3 to 19.5% divergence. Sequence divergence among members of a species was typically low (mean = 0.7%; range 0.0–8.5%), but two species showed intraspecific divergences in excess of 2%. Phylogenetic reconstructions based on COI were largely congruent with previous conclusions based on morphology, although the sequence data did not support placement of the purse-cased caddisflies (Hydroptilidae) within the uncased caddisflies, and, in particular, the Rhyacophiloidea. We conclude that sequence variation in the COI gene locus is an effective tool for the identification of New Zealand caddisfly species, and can provide preliminary phylogenetic inferences. Further research is needed to ascertain the significance of the few instances of high intra-specific divergence and to determine if any instances of sequence sharing will be detected with larger sample sizes
- …