89 research outputs found

    A Reconciliation between the Consumer Price Index and the Personal Consumption Expenditures Price Index

    Get PDF
    The Bureau of Labor Statistics (BLS) prepares the Consumer Price Index for All Urban Consumers (CPI-U), and the Bureau of Economic Analysis prepares the Personal Consumption Expenditures (PCE) chain-type price index. Both indexes measure the prices paid by consumers for goods and services. Because the two indexes are based on different underlying concepts, they are constructed differently, and tend to behave differently over time. From the first quarter of 2002 through the second quarter of 2007, the CPI-U increased 0.4 percentage point per year faster than the PCE price index. This paper details and quantifies the differences in growth rates between the CPI-U and the PCE price index; it provides a quarterly reconciliation of growth rates for the 2002:Q1- 2007:Q2 time period. There are several factors that explain the differences in growth rates between the CPI and the PCE price index. First, the indexes are based on difference index-number formulas. The CPI-U is based on a Laspeyres index; the PCE price index is based on a Fisher-Ideal index. Second, the relative weights assigned to the detailed item prices in each index are different because they are based on different data sources. The weights used in the CPIU are based on a household survey, while the weights used in the PCE price index are based on business surveys. Third, there are scope differences between the two indexes— that is, there are items in the CPI-U that are out-of-scope of the PCE price index, and there are items in the PCE price index that are out-of-scope of the CPI-U. And finally, there are differences in the seasonal-adjustment routines and in the detailed price indexes used to construct the two indexes. Over the 2002:Q1-2007:Q2 time period, this analysis finds that almost half of the 0.4 percentage point difference in growth rates between the CPI-U and the PCE price index was explained by differences in index-number formulas. After adjusting for formula differences, differences in relative weights—primarily “rent of shelter”—more than accounted for the remaining difference in growth rates. Net scope differences, in contrast, partly offset the effect of relative weight differences.

    Integrating Industry and National Economic Accounts: First Steps and Future Improvements

    Get PDF
    The integration of the annual I-O accounts with the GDP-by-industry accounts is the most recent in a series of improvements to the industry accounts provided by the BEA in recent years. BEA prepares two sets of national industry accounts: The I-O accounts, which consist of the benchmark I-O accounts and the annual I-O accounts, and the GDPby- industry accounts. Both the I-O accounts and the GDP-by-industry accounts present measures of gross output, intermediate inputs, and value added by industry. However, in the past, they were inconsistent because of the use of different methodologies, classification frameworks, and source data. The integration of these accounts eliminated these inconsistencies and improved the accuracy of both sets of accounts. The integration of the annual industry accounts represents a major advance in the timeliness, accuracy, and consistency of these accounts, and is a result of significant improvements in BEA's estimating methods. The paper describes the new methodology, and the future steps required to integrate the industry accounts with the NIPAs. The new methodology combines source data between the two industry accounts to improve accuracy; it prepares the newly integrated accounts within an I-O framework that balances and reconciles industry production with commodity usage. Moreover, the new methodology allows the acceleration of the release of the annual I-O accounts by 2 years and for the first time, provides a consistent time series of annual I-O accounts. Three appendices are provided: A description of the probability-based method to rank source data by quality; a description of the new balancing produced for producing the annual I-O accounts; and a description of the computation method used to estimate chaintype price and quantity indexes in the GDP-by-industry accounts.

    Panama Bridge Project

    Get PDF
    The Panama Bridge project has partnered with Rio Missions Panama to design a bridge for the village of La Gigi, Panama. The mountain community of La Gigi experiences heavy rainfall during the rainy seasons. A stream runs along the community, restricting their access to schools, employment options, and other communities. While passable during dry seasons, the stream floods and becomes impassable after heavy rains. The residents are effectively cut off from their livelihoods, church, health services, and other communities during this time. To accommodate this need, the Panama Bridge Team has spent the last two academic years designing a 90 foot aluminum truss bridge. The design includes a unique construction strategy to deal with challenging site constraints.https://mosaic.messiah.edu/engr2021/1011/thumbnail.jp

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Spatial Analyses of Benthic Habitats to Define Coral Reef Ecosystem Regions and Potential Biogeographic Boundaries along a Latitudinal Gradient

    Get PDF
    Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0–30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar regional analyses elsewhere
    corecore