47 research outputs found
Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream
Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3 −) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water concentrations at 30 min intervals over the snowmelt period (March 21–May 13, 2009) at a 40.5 hectare forested watershed at Sleepers River, Vermont. We also collected discrete samples for laboratory absorbance and fluorescence as well as δ18O–NO3 − isotopes to help interpret the drivers of variable NO3 − and FDOM concentrations measured in situ. In situ data revealed seasonal, event and diurnal patterns associated with hydrological and biogeochemical processes regulating stream NO3 − and FDOM concentrations. An observed decrease in NO3 − concentrations after peak snowmelt runoff and muted response to spring rainfall was consistent with the flushing of a limited supply of NO3 − (mainly from nitrification) from source areas in surficial soils. Stream FDOM concentrations were coupled with flow throughout the study period, suggesting a strong hydrologic control on DOM concentrations in the stream. However, higher FDOM concentrations per unit streamflow after snowmelt likely reflected a greater hydraulic connectivity of the stream to leachable DOM sources in upland soils. We also observed diurnal NO3 − variability of 1–2 μmol l−1 after snowpack ablation, presumably due to in-stream uptake prior to leafout. A comparison of NO3 − and dissolved organic carbon yields (DOC, measured by FDOM proxy) calculated from weekly discrete samples and in situ data sub-sampled daily resulted in small to moderate differences over the entire study period (−4 to 1% for NO3 − and −3 to −14% for DOC), but resulted in much larger differences for daily yields (−66 to +27% for NO3 − and −88 to +47% for DOC, respectively). Despite challenges inherent in in situ sensor deployments in harsh seasonal conditions, these data provide important insights into processes controlling NO3 − and FDOM in streams, and will be critical for evaluating the effects of climate change on snowmelt delivery to downstream ecosystems
Use and Environmental Occurrence of Antibiotics in Freestall Dairy Farms with Manured Forage Fields
Environmental releases of antibiotics from concentrated animal feeding operations (CAFOs) are of increasing regulatory concern. This study investigates the use and occurrence of antibiotics in dairy CAFOs and their potential transport into first-encountered groundwater. On two dairies we conducted four seasonal sampling campaigns, each across 13 animal production and waste management systems and associated environmental pathways: application to animals, excretion to surfaces, manure collection systems, soils, and shallow groundwater. Concentrations of antibiotics were determined using on line solid phase extraction (OLSPE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) with electrospray ionization (ESI) for water samples, and accelerated solvent extraction (ASE) LC/MS/MS with ESI for solid samples. A variety of antibiotics were applied at both farms leading to antibiotics excretion of several hundred grams per farm per day. Sulfonamides, tetracyclines, and their epimers/isomers, and lincomycin were most frequently detected. Yet, despite decades of use, antibiotic occurrence appeared constrained to within farm boundaries. The most frequent antibiotic detections were associated with lagoons, hospital pens, and calf hutches. When detected below ground, tetracyclines were mainly found in soils, whereas sulfonamides were found in shallow groundwater reflecting key differences in their physicochemical properties. In manure lagoons, 10 compounds were detected including tetracyclines and trimethoprim. Of these 10, sulfadimethoxine, sulfamethazine, and lincomycin were found in shallow groundwater directly downgradient from the lagoons. Antibiotics were sporadically detected in field surface samples on fields with manure applications, but not in underlying sandy soils. Sulfadimethoxine and sulfamethazine were detected in shallow groundwater near field flood irrigation gates, but at highly attenuated levels
Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements
Author Posting. © American Society of Limnology and Oceanography, 2011. This article is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 56 (2011): 1355-1371, doi:10.4319/lo.2011.56.4.1355.We assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 µg m−2 yr−1—4–40 times previously published yields—representing a potential loading to the estuary of 80 g yr−1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.This work was supported by funding from the California Bay
Delta Authority Ecosystem Restoration and Drinking Water
Programs (grant ERP-00-G01) and matching funds from the U.S.
Geological Survey Cooperative Research Program
Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements
We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM-representative of particle-associated and filter-passing Hg, respectively-together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005-2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes
Mercury dynamics in a San Francisco estuary tidal wetland : assessing dynamics using in situ measurements
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 1036-1048, doi:10.1007/s12237-012-9501-3.We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.This work
was supported by funding from the California Bay Delta Authority
Ecosystem Restoration and Drinking Water Programs (grant ERP-00-
G01) and matching funds from the United States Geological Survey
Cooperative Research Program
A Polymorphism in the HLA-DPB1 Gene Is Associated with Susceptibility to Multiple Sclerosis
We conducted an association study across the human leukocyte antigen (HLA) complex to identify loci associated with multiple sclerosis (MS). Comparing 1927 SNPs in 1618 MS cases and 3413 controls of European ancestry, we identified seven SNPs that were independently associated with MS conditional on the others (each ). All associations were significant in an independent replication cohort of 2212 cases and 2251 controls () and were highly significant in the combined dataset (). The associated SNPs included proxies for HLA-DRB1*15:01 and HLA-DRB1*03:01, and SNPs in moderate linkage disequilibrium (LD) with HLA-A*02:01, HLA-DRB1*04:01 and HLA-DRB1*13:03. We also found a strong association with rs9277535 in the class II gene HLA-DPB1 (discovery set , replication set , combined ). HLA-DPB1 is located centromeric of the more commonly typed class II genes HLA-DRB1, -DQA1 and -DQB1. It is separated from these genes by a recombination hotspot, and the association is not affected by conditioning on genotypes at DRB1, DQA1 and DQB1. Hence rs9277535 represents an independent MS-susceptibility locus of genome-wide significance. It is correlated with the HLA-DPB1*03:01 allele, which has been implicated previously in MS in smaller studies. Further genotyping in large datasets is required to confirm and resolve this association
Recommended from our members
Recent Advances in Understanding Flow Dynamics and Transport of Water-Quality Constituents in the Sacramento–San Joaquin River Delta
This paper, part of the collection of research comprising the State of Bay–Delta Science 2016, describes advances during the past decade in understanding flow dynamics and how water-quality constituents move within California’s Sacramento–San Joaquin River Delta (Delta). Water-quality constituents include salinity, heat, oxygen, nutrients, contaminants, organic particles, and inorganic particles. These constituents are affected by water diversions and other human manipulations of flow, and they greatly affect the quantity and quality of benthic, pelagic, and intertidal habitat in the Delta. The Pacific Ocean, the Central Valley watershed, human intervention, the atmosphere, and internal biogeochemical processes are all drivers of flow and transport in the Delta. These drivers provide a conceptual framework for presenting recent findings. The tremendous expansion of acoustic and optical instruments deployed in the Delta over the past decade has greatly improved our understanding of how tidal variability affects flow and transport. Sediment is increasingly viewed as a diminishing resource needed to sustain pelagic habitat and tidal marsh, especially as sea level rises. Connections among the watershed, Delta, and San Francisco Bay that have been quantified recently highlight that a landscape view of this system is needed, rather than consideration of each region in isolation. We discuss interactions of multiple drivers and information gaps