1,037 research outputs found

    A survey of mixed finite element methods

    Get PDF
    This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem

    Lowest order Virtual Element approximation of magnetostatic problems

    Full text link
    We give here a simplified presentation of the lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic field H\mathbf{H} on each edge, and the vertex values of the Lagrange multiplier pp (used to enforce the solenoidality of the magnetic induction B=μH\mathbf{B}=\mu\mathbf{H}). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called "first kind N\'ed\'elec" elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions

    Serendipity Face and Edge VEM Spaces

    Full text link
    We extend the basic idea of Serendipity Virtual Elements from the previous case (by the same authors) of nodal (H1H^1-conforming) elements, to a more general framework. Then we apply the general strategy to the case of H(div)H(div) and H(curl)H(curl) conforming Virtual Element Methods, in two and three dimensions

    Serendipity Nodal VEM spaces

    Full text link
    We introduce a new variant of Nodal Virtual Element spaces that mimics the "Serendipity Finite Element Methods" (whose most popular example is the 8-node quadrilateral) and allows to reduce (often in a significant way) the number of internal degrees of freedom. When applied to the faces of a three-dimensional decomposition, this allows a reduction in the number of face degrees of freedom: an improvement that cannot be achieved by a simple static condensation. On triangular and tetrahedral decompositions the new elements (contrary to the original VEMs) reduce exactly to the classical Lagrange FEM. On quadrilaterals and hexahedra the new elements are quite similar (and have the same amount of degrees of freedom) to the Serendipity Finite Elements, but are much more robust with respect to element distortions. On more general polytopes the Serendipity VEMs are the natural (and simple) generalization of the simplicial case

    The method of mothers for non-overlapping non-matching DDM

    Get PDF
    In this paper we introduce a variant of the three-field formulation where we use only two sets of variables. Considering, to fix the ideas, the homogeneous Dirichlet problem for the Laplace operator in a bounded domain, our variables are: 1) an approximation of the solution on the skeleton (the union of the interfaces of the sub-domains) on an independent grid (that could often be uniform), and 2) the approximations of the solution in each sub-domain, each on its own grid. The novelty is in the way to derive, from the approximation on the skeleton, the values of each trace of the approximations in the subdomains. We do it by solving an auxiliary problem, that resembles the mortar method but is more flexible. Under suitable assumptions, quasi-optimal error estimates are proved, uniformly with respect to the number and size of the subdomains

    Spaces of finite element differential forms

    Full text link
    We discuss the construction of finite element spaces of differential forms which satisfy the crucial assumptions of the finite element exterior calculus, namely that they can be assembled into subcomplexes of the de Rham complex which admit commuting projections. We present two families of spaces in the case of simplicial meshes, and two other families in the case of cubical meshes. We make use of the exterior calculus and the Koszul complex to define and understand the spaces. These tools allow us to treat a wide variety of situations, which are often treated separately, in a unified fashion.Comment: To appear in: Analysis and Numerics of Partial Differential Equations, U. Gianazza, F. Brezzi, P. Colli Franzone, and G. Gilardi, eds., Springer 2013. v2: a few minor typos corrected. v3: a few more typo correction

    Modeling virus pandemics in a globally connected world a challenge towards a mathematics for living systems

    Get PDF
    This editorial paper presents the papers published in a special issue devoted to the modeling and simulation of mutating virus pandemics in a globally connected world. The presentation is proposed in three parts. First, motivations and objectives are presented according to the idea that mathematical models should go beyond deterministic population dynamics by considering the multiscale, heterogeneous features of the complex system under consideration. Subsequently, the contents of the papers in this issue are presented referring to the aforementioned complexity features. Finally, a critical analysis of the overall contents of the issue is proposed, with the aim of providing a forward look to research perspectives.PostprintPeer reviewe

    Multigrid Applied to Mixed Finite Element Schemes for Current Continuity Equations

    Full text link
    • …
    corecore