1,037 research outputs found
A survey of mixed finite element methods
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem
Lowest order Virtual Element approximation of magnetostatic problems
We give here a simplified presentation of the lowest order Serendipity
Virtual Element method, and show its use for the numerical solution of linear
magneto-static problems in three dimensions. The method can be applied to very
general decompositions of the computational domain (as is natural for Virtual
Element Methods) and uses as unknowns the (constant) tangential component of
the magnetic field on each edge, and the vertex values of the
Lagrange multiplier (used to enforce the solenoidality of the magnetic
induction ). In this respect the method can be seen
as the natural generalization of the lowest order Edge Finite Element Method
(the so-called "first kind N\'ed\'elec" elements) to polyhedra of almost
arbitrary shape, and as we show on some numerical examples it exhibits very
good accuracy (for being a lowest order element) and excellent robustness with
respect to distortions
Serendipity Face and Edge VEM Spaces
We extend the basic idea of Serendipity Virtual Elements from the previous
case (by the same authors) of nodal (-conforming) elements, to a more
general framework. Then we apply the general strategy to the case of
and conforming Virtual Element Methods, in two and three dimensions
Serendipity Nodal VEM spaces
We introduce a new variant of Nodal Virtual Element spaces that mimics the
"Serendipity Finite Element Methods" (whose most popular example is the 8-node
quadrilateral) and allows to reduce (often in a significant way) the number of
internal degrees of freedom. When applied to the faces of a three-dimensional
decomposition, this allows a reduction in the number of face degrees of
freedom: an improvement that cannot be achieved by a simple static
condensation. On triangular and tetrahedral decompositions the new elements
(contrary to the original VEMs) reduce exactly to the classical Lagrange FEM.
On quadrilaterals and hexahedra the new elements are quite similar (and have
the same amount of degrees of freedom) to the Serendipity Finite Elements, but
are much more robust with respect to element distortions. On more general
polytopes the Serendipity VEMs are the natural (and simple) generalization of
the simplicial case
The method of mothers for non-overlapping non-matching DDM
In this paper we introduce a variant of the three-field formulation
where we use only two sets of variables. Considering, to fix the ideas, the
homogeneous Dirichlet problem for the Laplace operator in a bounded domain,
our variables are: 1) an approximation of the solution on the skeleton (the
union of the interfaces of the sub-domains) on an independent grid (that could
often be uniform), and 2) the approximations of the solution in each
sub-domain, each on its own grid. The novelty is in the way to derive, from the
approximation on the skeleton, the values of each trace of the approximations
in the subdomains. We do it by solving an auxiliary problem, that resembles the
mortar method but is more flexible. Under suitable assumptions, quasi-optimal
error estimates are proved, uniformly with respect to the number and size of
the subdomains
Spaces of finite element differential forms
We discuss the construction of finite element spaces of differential forms
which satisfy the crucial assumptions of the finite element exterior calculus,
namely that they can be assembled into subcomplexes of the de Rham complex
which admit commuting projections. We present two families of spaces in the
case of simplicial meshes, and two other families in the case of cubical
meshes. We make use of the exterior calculus and the Koszul complex to define
and understand the spaces. These tools allow us to treat a wide variety of
situations, which are often treated separately, in a unified fashion.Comment: To appear in: Analysis and Numerics of Partial Differential
Equations, U. Gianazza, F. Brezzi, P. Colli Franzone, and G. Gilardi, eds.,
Springer 2013. v2: a few minor typos corrected. v3: a few more typo
correction
Modeling virus pandemics in a globally connected world a challenge towards a mathematics for living systems
This editorial paper presents the papers published in a special issue devoted to the modeling and simulation of mutating virus pandemics in a globally connected world. The presentation is proposed in three parts. First, motivations and objectives are presented according to the idea that mathematical models should go beyond deterministic population dynamics by considering the multiscale, heterogeneous features of the complex system under consideration. Subsequently, the contents of the papers in this issue are presented referring to the aforementioned complexity features. Finally, a critical analysis of the overall contents of the issue is proposed, with the aim of providing a forward look to research perspectives.PostprintPeer reviewe
- …