189 research outputs found

    A catalogue of bird bones: an exercise in semantic web practice

    Get PDF
    The vast databases of natural history collections are increasingly being made accessible through the internet. The challenge is to place this data in a wider context that may reach beyond the interests of scholars only. The North Atlantic Biocultural Organization and Icelandic Institute of Natural History are jointly developing a web based catalogue of bird bones, comprising digital images, and related information from the museum database. Linking the bird bone catalogue with the semantic web developed by STERNA will integrate the bird bone catalogue with diverse information on birds that is directed towards the general public

    Optically Selected BL Lacertae Candidates from the Sloan Digital Sky Survey Data Release Seven

    Full text link
    We present a sample of 723 optically selected BL Lac candidates from the SDSS DR7 spectroscopic database encompassing 8250 deg^2 of sky; our sample constitutes one of the largest uniform BL Lac samples yet derived. Each BL Lac candidate has a high-quality SDSS spectrum from which we determine spectroscopic redshifts for ~60% of the objects. Redshift lower limits are estimated for the remaining objects utilizing the lack of host galaxy flux contamination in their optical spectra; we find that objects lacking spectroscopic redshifts are likely at systematically higher redshifts. Approximately 80% of our BL Lac candidates match to a radio source in FIRST/NVSS, and ~40% match to a ROSAT X-ray source. The homogeneous multiwavelength coverage allows subdivision of the sample into 637 radio-loud BL Lac candidates and 86 weak-featured radio-quiet objects. The radio-loud objects broadly support the standard paradigm unifying BL Lac objects with beamed radio galaxies. We propose that the majority of the radio-quiet objects may be lower-redshift (z<2.2) analogs to high-redshift weak line quasars (i.e., AGN with unusually anemic broad emission line regions). These would constitute the largest sample of such objects, being of similar size and complementary in redshift to the samples of high-redshift weak line quasars previously discovered by the SDSS. However, some fraction of the weak-featured radio-quiet objects may instead populate a rare and extreme radio-weak tail of the much larger radio-loud BL Lac population. Serendipitous discoveries of unusual white dwarfs, high-redshift weak line quasars, and broad absorption line quasars with extreme continuum dropoffs blueward of rest-frame 2800 Angstroms are also briefly described.Comment: 24 pages, 14 figures, 8 tables. Accepted for publication in A

    The Hercules-Aquila Cloud

    Full text link
    We present evidence for a substantial overdensity of stars in the direction of the constellations of Hercules and Aquila. The Cloud is centered at a Galactic longitude of about 40 degrees and extends above and below the Galactic plane by at least 50 degrees. Given its off-centeredness and height, it is unlikely that the Hercules-Aquila Cloud is related to the bulge or thick disk. More likely, this is a new structural component of the Galaxy that passes through the disk. The Cloud stretches about 80 degrees in longitude. Its heliocentric distance lies between 10 and 20 kpc so that the extent of the Cloud in projection is roughly 20 kpc by 15 kpc. It has an absolute magnitude of -13 and its stellar population appears to be comparable to, but somewhat more metal-rich than, M92.Comment: ApJ (Letters), in pres

    A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4

    Get PDF
    We present a catalog of 9316 spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey Data Release 4. We have selected the stars through photometric cuts and spectroscopic modeling, backed up by a set of visual inspections. Roughly 6000 of the stars are new discoveries, roughly doubling the number of spectroscopically confirmed white dwarfs. We analyze the stars by performing temperature and surface gravity fits to grids of pure hydrogen and helium atmospheres. Among the rare outliers are a set of presumed helium-core DA white dwarfs with estimated masses below 0.3 Msun, including two candidates that may be the lowest masses yet found. We also present a list of 928 hot subdwarfs.Comment: Accepted by the Astrophysical Journal Supplements, 25 pages, 24 figures, LaTeX. The electronic catalog, as well as diagnostic figures and links to the spectra, is available at http://das.sdss.org/wdcat/dr4

    The clustering of intermediate redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey

    Get PDF
    We measure the quasar two-point correlation function over the redshift range 2.2<z<2.8 using data from the Baryon Oscillation Spectroscopic Survey. We use a homogeneous subset of the data consisting of 27,129 quasars with spectroscopic redshifts---by far the largest such sample used for clustering measurements at these redshifts to date. The sample covers 3,600 square degrees, corresponding to a comoving volume of 9.7(Gpc/h)^3 assuming a fiducial LambdaCDM cosmology, and it has a median absolute i-band magnitude of -26, k-corrected to z=2. After accounting for redshift errors we find that the redshift space correlation function is fit well by a power-law of slope -2 and amplitude s_0=(9.7\pm 0.5)Mpc/h over the range 3<s<25Mpc/h. The projected correlation function, which integrates out the effects of peculiar velocities and redshift errors, is fit well by a power-law of slope -1 and r_0=(8.4\pm 0.6)Mpc/h over the range 4<R<16Mpc/h. There is no evidence for strong luminosity or redshift dependence to the clustering amplitude, in part because of the limited dynamic range in our sample. Our results are consistent with, but more precise than, previous measurements at similar redshifts. Our measurement of the quasar clustering amplitude implies a bias factor of b~3.5 for our quasar sample. We compare the data to models to constrain the manner in which quasars occupy dark matter halos at z~2.4 and infer that such quasars inhabit halos with a characteristic mass of ~10^{12}Msun/h with a duty cycle for the quasar activity of 1 per cent.Comment: 20 pages, 18 figures. Minor modifications to match version accepted by journa

    Discovery of an Unusual Dwarf Galaxy in the Outskirts of the Milky Way

    Get PDF
    In this Letter, we announce the discovery of a new dwarf galaxy, Leo T, in the Local Group. It was found as a stellar overdensity in the Sloan Digital Sky Survey Data Release 5 (SDSS DR5). The color-magnitude diagram of Leo T shows two well-defined features, which we interpret as a red giant branch and a sequence of young, massive stars. As judged from fits to the color-magnitude diagram, it lies at a distance of about 420 kpc and has an intermediate-age stellar population with a metallicity of [Fe/H]= -1.6, together with a young population of blue stars of age of 200 Myr. There is a compact cloud of neutral hydrogen with mass roughly 10^5 solar masses and radial velocity 35 km/s coincident with the object visible in the HIPASS channel maps. Leo T is the smallest, lowest luminosity galaxy found to date with recent star-formation. It appears to be a transition object similar to, but much lower luminosity than, the Phoenix dwarf.Comment: Ap J (Letters) in press, the subject of an SDSS press release toda

    New Low Accretion-Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables

    Full text link
    Discoveries of two new white dwarf plus M star binaries with striking optical cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to six the total number of X-ray faint, magnetic accretion binaries that accrete at rates < 10^{-13} Msun/yr, or <1% of the values normally encountered in cataclysmic variables. This fact, coupled with donor stars that underfill their Roche lobes and very cool white dwarfs, brand the binaries as post common-envelope systems whose orbits have not yet decayed to the point of Roche-lobe contact. They are pre-magnetic CVs, or pre-Polars. The systems exhibit spin/orbit synchronism and apparently accrete by efficient capture of the stellar wind from the secondary star, a process that has been dubbed a ``magnetic siphon''. Because of this, period evolution of the binaries will occur solely by gravitational radiation, which is very slow for periods >3 hr. Optical surveys for the cyclotron harmonics appear to be the only means of discovery, so the space density of pre-Polars could rival that of Polars, and the binaries provide an important channel of progenitors (in addition to the asynchronous Intermediate Polars). Both physical and SDSS observational selection effects are identified that may help to explain the clumping of all six systems in a narrow range of magnetic field strength around 60 MG.Comment: 25 pages, 13 figures, Accepted to Ap

    A Strategy for Finding Near Earth Objects with the SDSS Telescope

    Full text link
    We present a detailed observational strategy for finding Near Earth Objects (NEOs) with the Sloan Digital Sky Survey (SDSS) telescope. We investigate strategies in normal, unbinned mode as well as binning the CCDs 2x2 or 3x3, which affects the sky coverage rate and the limiting apparent magnitude. We present results from 1 month, 3 year and 10 year simulations of such surveys. For each cadence and binning mode, we evaluate the possibility of achieving the Spaceguard goal of detecting 90% of 1 km NEOs (absolute magnitude H <= 18 for an albedo of 0.1). We find that an unbinned survey is most effective at detecting H <= 20 NEOs in our sample. However, a 3x3 binned survey reaches the Spaceguard Goal after only seven years of operation. As the proposed large survey telescopes (PanStarss; LSST) are at least 5-10 years from operation, an SDSS NEO survey could make a significant contribution to the detection and photometric characterization of the NEO population.Comment: Accepted by AJ -- 12 pages, 11 figure

    Candidate spectroscopic binaries in the Sloan Digital Sky Survey

    Full text link
    We have examined the radial velocity data for stars spectroscopically observed by the Sloan Digital Sky Survey (SDSS) more than once to investigate the incidence of spectroscopic binaries, and to evaluate the accuracy of the SDSS stellar radial velocities. We find agreement between the fraction of stars with significant velocity variations and the expected fraction of binary stars in the halo and thick disk populations. The observations produce a list of 675 possible new spectroscopic binary stars and orbits for eight of them.Comment: 7 pages, 17 figures. Accepted for publication in Astronomy and Astrophysics. Table 4 is available at http://sb9.astro.ulb.ac.be/~pourbaix/Papers/data/SDSS/table4.da

    CT colonography’s role in the COVID-19 pandemic: a safe(r), socially distanced total colon examination

    Get PDF
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature. Purpose: To describe the favorable procedural profile of CT colonography (CTC) during the COVID-19 pandemic. Conclusion: Postponement of cancer screening due to COVID-19 has resulted in a backlog of individuals needing to undergo structural examination of the colon. The experience during the initial COVID-19 surge with urgent evaluation of the colon for transplant patients prior to transplant suggests that CTC can be done in a lower risk manner as compared to other structural examinations. The procedural profile of CTC is advantageous during this pandemic as maintaining social distancing and preserving healthcare supplies including PPE are of paramount importance. CTC is an important option to utilize in the screening armamentarium to allow effective screening of average risk asymptomatic individuals in the COVID-19 era
    • 

    corecore