691 research outputs found

    Substitution effects on the temperature vs. magnetic-field phase diagrams of the quasi-1D effective Ising spin-1/2 chain system BaCo2_2V2_2O8_8

    Full text link
    BaCo2_2V2_2O8_8 is a one-dimensional antiferromagnetic spin-1/2 chain system with pronounced Ising anisotropy of the magnetic exchange. Due to finite interchain interactions long-range antiferromagnetic order develops below TN5.5T_{\rm N} \simeq 5.5 K, which is accompanied by a structural distortion in order to lift magnetic frustration effects. The corresponding temperature vs.vs. magnetic-field phase diagram is highly anisotropic with respect to the magnetic-field direction and various details are still under vivid discussion. Here, we report the influence of several substitutions on the magnetic properties and the phase diagrams of BaCo2_2V2_2O8_8. We investigate the substitution series Ba1-x_{\text{1-x}}Srx_{\text{x}}Co2_{\text{2}}V2_{\text{2}}O8_{\text{8}} over the full range 0x10\le x \le 1 as well as the influence of a partial substitution of the magnetic Co2+^{2+} by small amounts of other magnetic transition metals or by non-magnetic magnesium. In all cases, the phase diagrams were obtained on single crystals from magnetization data and/or high-resolution studies of the thermal expansion and magnetostriction.Comment: 10 pages, 10 figure

    Efficient Spatio-Temporal Modelling to Enable Topological Analysis

    Get PDF

    Low-temperature ordered phases of the spin-12\frac{1}{2} XXZ chain system Cs2_2CoCl4_4

    Full text link
    In this study the magnetic order of the spin-1/2 XXZ chain system Cs2_2CoCl4_4 in a temperature range from 50 mK to 0.5 K and in applied magnetic fields up to 3.5 T is investigated by high-resolution measurements of the thermal expansion and the specific heat. Applying magnetic fields along a or c suppresses TNT_\textrm{N} completely at about 2.1 T. In addition, we find an adjacent intermediate phase before the magnetization saturates close to 2.5 T. For magnetic fields applied along b, a surprisingly rich phase diagram arises. Two additional transitions are observed at critical fields μ0HSF10.25\mu_0 H_{SF1}\simeq 0.25 T and μ0HSF20.7\mu_0 H_{SF2}\simeq 0.7 T, which we propose to arise from a two-stage spin-flop transition.Comment: 10 pages, 10 figure

    μ-Carbonato-bis­(bis­{2-[(diethyl­amino)­meth­yl]phen­yl}bis­muth(III))

    Get PDF
    The mol­ecular structure of the title compound, [Bi2(C11H16N)4(CO3)], consists of a symmetrically bridging carbonato group which binds two [2-Et2NCH2C6H4]2Bi units that are crystallographically related via a twofold rotation axis bis­ecting the carbonate group. The two Bi atoms and two of the C atoms directly bonded to bis­muth are quasi-planar [deviations of 0.323 (1) and 0.330 (9)Å for the Bi and C atoms, respectively] with the carbonate group. The remaining two ligands are in a trans arrangement relative to the quasi-planar (CBi)2CO3 system. The metal atom is strongly coordinated by the N atom of one pendant arm [Bi—N = 2.739 (6) Å], almost trans to the O atom, while the N atom of the other pendant arm exhibits a weaker intra­molecular inter­action [Bi⋯N = 3.659 (7) Å] almost trans to a C atom. If both these intra­molecular N→Bi inter­actions per metal atom are considered, the overall coordination geometry at bis­muth becomes distorted square-pyramidal [(C,N)2BiO cores] and the compound can be described as a hypervalent 12-Bi-5 species. Additional quite short intra­molecular Bi⋯O inter­actions are also present [3.796 (8)–4.020 (9) Å]. Inter­molecular associations through weak η6⋯Bi inter­actions [Bi⋯centroid of benzene ring = 3.659 (1) Å] lead to a ribbon-like supra­molecular association

    Topologically Consistent Models for Efficient Big Geo-Spatio-Temporal Data Distribution

    Get PDF
    Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment

    High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy

    Get PDF
    We report a diffraction-limited photonic terahertz (THz) source with linewidth \u3c 10 MHz that can be used for nonlinear THz studies in the continuous wave (CW) regime with uninterrupted tunability in a broad range of THz frequencies. THz output is produced in orientation-patterned (OP) gallium arsenide (GaAs) via intracavity frequency mixing between the two closely spaced resonating signal and idler waves of an optical parametric oscillator (OPO) operating near lambda = 2 mu m. The doubly resonant type II OPO is based on a periodically poled lithium niobate (PPLN) pumped by a single-frequency Yb:YAG disc laser at 1030 nm. We take advantage of the enhancement of both optical fields inside a high-finesse OPO cavity: with 10 W of 1030 nm pump, 100 W of intracavity power near 2 mu m was attained with GaAs inside cavity. This allows dramatic improvement in terms of generated THz power, as compared to the state-of-the art CW methods. We achieved \u3e 25 mu W of single-frequency tunable CW THz output power scalable to \u3e 1 mW with proper choice of pump laser wavelength

    Quantum Criticality of an Ising-like Spin-1/2 Antiferromagnetic Chain in Transverse Magnetic Field

    Get PDF
    We report on magnetization, sound velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo2_2V2_2O8_8 as a function of temperature down to 1.3 K and applied transverse magnetic field up to 60 T. While across the N\'{e}el temperature of TN5T_N\sim5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v(B)v(B) and a clear minimum of temperature T(B)T(B) at Bc,3D=21.4B^{c,3D}_\perp=21.4 T, indicating the suppression of the antiferromagnetic order. At higher fields, the T(B)T(B) curve shows a broad minimum at Bc=40B^c_\perp = 40 T, accompanied by a broad minimum in the sound velocity and a saturation-like magnetization. These features signal a quantum phase transition which is further characterized by the divergent behavior of the Gr\"{u}neisen parameter ΓB(BBc)1\Gamma_B \propto (B-B^{c}_\perp)^{-1}. By contrast, around the critical field, the Gr\"{u}neisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.Comment: Phys. Rev. Lett., to appea

    Towards intelligent geo-database support for earth system observation: Improving the preparation and analysis of big spatio-temporal raster data

    Get PDF
    The European COPERNICUS program provides an unprecedented breakthrough in the broad use and application of satellite remote sensing data. Maintained on a sustainable basis, the COPERNICUS system is operated on a free-and-open data policy. Its guaranteed availability in the long term attracts a broader community to remote sensing applications. In general, the increasing amount of satellite remote sensing data opens the door to the diverse and advanced analysis of this data for earth system science. However, the preparation of the data for dedicated processing is still inefficient as it requires time-consuming operator interaction based on advanced technical skills. Thus, the involved scientists have to spend significant parts of the available project budget rather on data preparation than on science. In addition, the analysis of the rich content of the remote sensing data requires new concepts for better extraction of promising structures and signals as an effective basis for further analysis. In this paper we propose approaches to improve the preparation of satellite remote sensing data by a geo-database. Thus the time needed and the errors possibly introduced by human interaction are minimized. In addition, it is recommended to improve data quality and the analysis of the data by incorporating Artificial Intelligence methods. A use case for data preparation and analysis is presented for earth surface deformation analysis in the Upper Rhine Valley, Germany, based on Persistent Scatterer Interferometric Synthetic Aperture Radar data. Finally, we give an outlook on our future research

    DATABASE-SUPPORTED CHANGE ANALYSIS AND QUALITY EVALUATION OF OPENSTREETMAP DATA

    Get PDF
    A significant advantage of OpenStreetMap data is its up-to-dateness. However, for rural and city planning, it is also of importance to access historical data and to compare the changes between new and old versions of the same area. This paper first introduces into a differentiated classification of changes on OpenStreetMap data sets. Then a methodology for an automated database-supported analysis of changes is presented. Beyond the information already provided from the OpenStreetMap server, we present a more detailed analysis with derived information. Based on this approach it is possible to identify objects with attributive or geometric changes and to find out how they exactly differ from their previous versions. The analysis shows in which regions mappers were active during a certain time interval. Furthermore, a time based approach based on various parameters to determine the quality of the data is presented. It provides a guideline of data quality and works without any reference data. Therefore, an indication about the development of OpenStreetMap in terms of completeness and correctness of the data in different regions is given. Finally, a conclusion and an outlook on open research questions are presented

    The spin-12\frac{1}{2} XXZ chain system Cs2_2CoCl4_4 in a transverse magnetic field

    Full text link
    Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs2_2CoCl4_4 for a magnetic field along the crystallographic b axis realizes the spin-12\frac{1}{2} XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal field states, we find that the spin chain is in the XY-limit with an anisotropy Jz/J0.12J_z/J_\perp \approx 0.12 substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of μ0Hbcr2\mu_0 H_b^{\rm cr} \approx 2 T before around 3.5 T the description in terms of an effective spin-12\frac{1}{2} chain becomes inapplicable.Comment: 5 pages, 3 figure
    corecore