4,795 research outputs found
Spintronics-based mesoscopic heat engine
We consider a nanowire suspended on two spin-polarized leads and subject to a
nonuniform magnetic field. We show that in such a system a temperature drop
between leads can significantly affect the nanowire dynamics. In particular, it
is demonstrated that under certain conditions the stationary distribution of
the mechanical subsystem has Boltzmann form with effective temperature which is
smaller than the temperature of the "cold" lead; this seems rather
counterintuitive. We also find that the change of the direction of the
temperature gradient results in generation of mechanical vibrations rather than
heating of the mechanical subsystem.Comment: 5 pages, 3 figure
Initial state preparation with dynamically generated system-environment correlations
The dependence of the dynamics of open quantum systems upon initial
correlations between the system and environment is an utterly important yet
poorly understood subject. For technical convenience most prior studies assume
factorizable initial states where the system and its environments are
uncorrelated, but these conditions are not very realistic and give rise to
peculiar behaviors. One distinct feature is the rapid build up or a sudden jolt
of physical quantities immediately after the system is brought in contact with
its environments. The ultimate cause of this is an initial imbalance between
system-environment correlations and coupling. In this note we demonstrate
explicitly how to avoid these unphysical behaviors by proper adjustments of
correlations and/or the coupling, for setups of both theoretical and
experimental interest. We provide simple analytical results in terms of
quantities that appear in linear (as opposed to affine) master equations
derived for factorized initial states.Comment: 6 pages, 2 figure
Sudden transition between classical and quantum decoherence
We study the dynamics of quantum and classical correlations in the presence
of nondissipative decoherence. We discover a class of initial states for which
the quantum correlations, quantified by the quantum discord, are not destroyed
by decoherence for times t < \bar{t}. In this initial time interval classical
correlations decay. For t > \bar{t}, on the other hand, classical correlations
do not change in time and only quantum correlations are lost due to the
interaction with the environment. Therefore, at the transition time \bar{t} the
open system dynamics exhibits a sudden transition from classical to quantum
decoherence regime.Comment: version accepted for publication by Physical Review Letter
Enumerating Colorings, Tensions and Flows in Cell Complexes
We study quasipolynomials enumerating proper colorings, nowhere-zero
tensions, and nowhere-zero flows in an arbitrary CW-complex , generalizing
the chromatic, tension and flow polynomials of a graph. Our colorings, tensions
and flows may be either modular (with values in for
some ) or integral (with values in ). We obtain
deletion-contraction recurrences and closed formulas for the chromatic, tension
and flow quasipolynomials, assuming certain unimodularity conditions. We use
geometric methods, specifically Ehrhart theory and inside-out polytopes, to
obtain reciprocity theorems for all of the aforementioned quasipolynomials,
giving combinatorial interpretations of their values at negative integers as
well as formulas for the numbers of acyclic and totally cyclic orientations of
.Comment: 28 pages, 3 figures. Final version, to appear in J. Combin. Theory
Series
Witness for initial system-environment correlations in open system dynamics
We study the evolution of a general open quantum system when the system and
its environment are initially correlated. We show that the trace distance
between two states of the open system can increase above its initial value, and
derive tight upper bounds for the growth of the distinguishability of open
system states. This represents a generalization of the contraction property of
quantum dynamical maps. The obtained inequalities can be interpreted in terms
of the exchange of information between the system and the environment, and lead
to a witness for system-environment correlations which can be determined
through measurements on the open system alone.Comment: 4 pages, 1 figur
Quantum Transport through Nanostructures with Orbital Degeneracies
Geometric symmetries cause orbital degeneracies in a molecule's spectrum. In
a single-molecule junction, these degeneracies are lifted by various
symmetry-breaking effects. We study quantum transport through such
nanostructures with an almost degenerate spectrum. We show that the master
equation for the reduced density matrix must be derived within the
singular-coupling limit as opposed to the conventional weak-coupling limit.
This results in signatures of the density matrix's off-diagonal elements in the
transport characteristics
Phenomenological memory-kernel master equations and time-dependent Markovian processes
Do phenomenological master equations with memory kernel always describe a
non-Markovian quantum dynamics characterized by reverse flow of information? Is
the integration over the past states of the system an unmistakable signature of
non-Markovianity? We show by a counterexample that this is not always the case.
We consider two commonly used phenomenological integro-differential master
equations describing the dynamics of a spin 1/2 in a thermal bath. By using a
recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M.
Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that
as far as the equations retain their physical sense, the key feature of
non-Markovian behavior does not appear in the considered memory kernel master
equations. Namely, there is no reverse flow of information from the environment
to the open system. Therefore, the assumption that the integration over a
memory kernel always leads to a non-Markovian dynamics turns out to be
vulnerable to phenomenological approximations. Instead, the considered
phenomenological equations are able to describe time-dependent and
uni-directional information flow from the system to the reservoir associated to
time-dependent Markovian processes.Comment: 5 pages, no figure
Jump-diffusion unravelling of a non Markovian generalized Lindblad master equation
The "correlated-projection technique" has been successfully applied to derive
a large class of highly non Markovian dynamics, the so called non Markovian
generalized Lindblad type equations or Lindblad rate equations. In this
article, general unravellings are presented for these equations, described in
terms of jump-diffusion stochastic differential equations for wave functions.
We show also that the proposed unravelling can be interpreted in terms of
measurements continuous in time, but with some conceptual restrictions. The
main point in the measurement interpretation is that the structure itself of
the underlying mathematical theory poses restrictions on what can be considered
as observable and what is not; such restrictions can be seen as the effect of
some kind of superselection rule. Finally, we develop a concrete example and we
discuss possible effects on the heterodyne spectrum of a two-level system due
to a structured thermal-like bath with memory.Comment: 23 page
- …