1,383 research outputs found

    Rain: Relaxations in the sky

    Full text link
    We demonstrate how, from the point of view of energy flow through an open system, rain is analogous to many other relaxational processes in Nature such as earthquakes. By identifying rain events as the basic entities of the phenomenon, we show that the number density of rain events per year is inversely proportional to the released water column raised to the power 1.4. This is the rain-equivalent of the Gutenberg-Richter law for earthquakes. The event durations and the waiting times between events are also characterised by scaling regions, where no typical time scale exists. The Hurst exponent of the rain intensity signal H=0.76>0.5H = 0.76 > 0.5. It is valid in the temporal range from minutes up to the full duration of the signal of half a year. All of our findings are consistent with the concept of self-organised criticality, which refers to the tendency of slowly driven non-equilibrium systems towards a state of scale free behaviour.Comment: 9 pages, 8 figures, submitted to PR

    Plastic Flow, Voltage Bursts, and Vortex Avalanches in Superconductors

    Full text link
    We use large-scale parallel simulations to compute the motion of superconducting magnetic vortices during avalanches triggered by small field increases. We find that experimentally observable voltage bursts correspond to pulsing vortex movement along branched channels or winding chains, and relate vortex flow images to features of statistical distributions. As pin density is increased, a crossover occurs from interstitial motion in narrow easy-flow winding channels with typical avalanche sizes, to pin-to-pin motion in broad channels, characterized by a very broad distribution of sizes. Our results are consistent with recent experiments.Comment: 4 pages, Latex, 4 figures included. Movies available at http://www-personal.engin.umich.edu/~nor

    Word Processors with Line-Wrap: Cascading, Self-Organized Criticality, Random Walks, Diffusion, Predictability

    Full text link
    We examine the line-wrap feature of text processors and show that adding characters to previously formatted lines leads to the cascading of words to subsequent lines and forms a state of self-organized criticality. We show the connection to one-dimensional random walks and diffusion problems, and we examine the predictability of catastrophic cascades.Comment: 6 pages, LaTeX with RevTeX package, 4 postscript figures appende

    Long-range effects in granular avalanching

    Full text link
    We introduce a model for granular flow in a one-dimensional rice pile that incorporates rolling effects through a long-range rolling probability for the individual rice grains proportional to rρr^{-\rho}, rr being the distance traveled by a grain in a single topling event. The exponent ρ\rho controls the average rolling distance. We have shown that the crossover from power law to stretched exponential behaviors observed experimentally in the granular dynamics of rice piles can be well described as a long-range effect resulting from a change in the transport properties of individual grains. We showed that stretched exponential avalanche distributions can be associated with a long-range regime for 1<ρ<21<\rho<2 where the average rolling distance grows as a power law with the system size, while power law distributions are associated with a short range regime for ρ>2\rho>2, where the average rolling distance is independent of the system size.Comment: 5 pages, 3 figure

    Breakdown of self-organized criticality

    Full text link
    We introduce two sandpile models which show the same behavior of real sandpiles, that is, an almost self-organized critical behavior for small systems and the dominance of large avalanches as the system size increases. The systems become fully self-organized critical, with the critical exponents of the Bak, Tang and Wiesenfeld model, as the system parameters are changed, showing that these systems can make a bridge between the well known theoretical and numerical results and what is observed in real experiments. We find that a simple mechanism determines the boundary where self-organized can or cannot exist, which is the presence of local chaos.Comment: 3 pages, 4 figure

    Xerostomia, Xerogenic Medications and Food Avoidances in Selected Geriatric Groups

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111175/1/j.1532-5415.1995.tb05815.x.pd
    corecore