774 research outputs found

    Non-linear responses of glaciated prairie wetlands to climate warming

    Get PDF
    The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies

    Non-linear responses of glaciated prairie wetlands to climate warming

    Get PDF
    The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies

    Evidence for 20th Century Climate Warming and Wetland Drying in the North American Prairie Pothole Region

    Get PDF
    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR’s western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species

    Spinning Down a Black Hole With Scalar Fields

    Get PDF
    We study the evolution of a Kerr black hole emitting scalar radiation via the Hawking process. We show that the rate at which mass and angular momentum are lost by the black hole leads to a final evolutionary state with nonzero angular momentum, namely a/M0.555a/M \approx 0.555.Comment: 4 pages (including 3 postscript figures), Revtex, uses epsf.tex, twocolumn.sty and header.sty (included). Submitted to Physical Review Letter

    MODELING THE EFFECTS OF TILE DRAIN PLACEMENT ON THE HYDROLOGIC FUNCTION OF FARMED PRAIRIE WETLANDS1

    Get PDF
    The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection programs. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wetland boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change

    MODELING THE EFFECTS OF TILE DRAIN PLACEMENT ON THE HYDROLOGIC FUNCTION OF FARMED PRAIRIE WETLANDS1

    Get PDF
    The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection pro- grams. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wet- land boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change

    Do semiclassical zero temperature black holes exist?

    Get PDF
    The semiclassical Einstein equations are solved to first order in ϵ=/M2\epsilon = \hbar/M^2 for the case of a Reissner-Nordstr\"{o}m black hole perturbed by the vacuum stress-energy of quantized free fields. Massless and massive fields of spin 0, 1/2, and 1 are considered. We show that in all physically realistic cases, macroscopic zero temperature black hole solutions do not exist. Any static zero temperature semiclassical black hole solutions must then be microscopic and isolated in the space of solutions; they do not join smoothly onto the classical extreme Reissner-Nordst\"{o}m solution as ϵ0\epsilon \to 0.Comment: 5 pages, no figures, minor changes and corrections, to appear in Physical Review Letter

    A phase II study of glembatumumab vedotin for metastatic uveal melanoma

    Get PDF
    Glembatumumab vedotin (CDX-011, GV) is a fully human Immunoglobulin G2 monoclonal antibody directed against glycoprotein NMB coupled via a peptide linker to monomethyl auristatin E (MMAE), a potent cytotoxic microtubule inhibitor. This phase II study evaluated the overall response rate and safety of GV, glycoprotein NMB (GPNMB) expression, and survival in patients with metastatic uveal melanoma. Eligible patients with metastatic uveal melanoma who had not previously been treated with chemotherapy received GV 1.9 mg/kg every three weeks. The primary endpoint was the objective response rate (ORR). Secondary endpoints included GPNMB expression, progression-free survival (PFS), overall survival (OS), and toxicity analysis. GPNMB expression was assessed pre- and post-treatment via immunohistochemistry for patients with available tumor tissue. Out of 35 patients who received treatment, two patients had confirmed partial responses (PRs; 6%), and 18 patients had a stable disease (SD; 51%) as the best objective response. 38% of the patients had stable disease \u3e100 days. The grade 3 or 4 toxicities that occurred in two or more patients were neutropenia, rash, hyponatremia, and vomiting. The median progression-free survival was 3.1 months (95% CI: 1.5-5.6), and the median overall survival was 11.9 months (95% CI 9.0-16.9) in the evaluable study population. GV is well-tolerated in metastatic uveal melanoma. The disease control rate was 57% despite a low objective response rate. Exploratory immune correlation studies are underway to provide insight into target saturation, combination strategies, and antigen release

    Halogen Oxidation Reactions of (C5Ph5)Cr(CO)3 and Lewis Base Addition To [(C5Ph5)Cr(μ-X)X]2: Electrochemical, Magnetic, and Raman Spectroscopic Characterization of [(C5Ph5)CrX2]2 and (C5Ph5)CrX2(THF) (X = Cl, Br, I). X-ray Crystal Structure of [(C5Ph5)Cr(μ-Cl)Cl]2

    Get PDF
    The 17-electron complex (C5Ph5)Cr(CO)3 reacts with halogens (C6H5I•Cl2, Br2, and I2) in C6H6 to yield the dimeric oxidation products [(C5Ph5)Cr(m-X)X]2 as thermally stable solids. Reactions with other chlorinating agents similarly yield [(C5Ph5)CrCl2]2. An X-ray crystal structure of [(C5Ph5)Cr(m-Cl)Cl]2 was obtained. The magnetic properties of the Cl2 bridged dimer have been determined and modeled using the usual isotropic hamiltonian which yields J/k = –30 K. Low-temperature (77 K) Raman spectra of solid [(C5Ph5)CrX2]2 (X = Cl, I) allow assignments to be made for the metal-ring and metal halogen stretching modes in the low frequency region (\u3c 600 cm-1). Tetrahydrofuran (THF) cleaves these dimers to yield complexes of the form (C5Ph5)CrX2(THF)

    The FeH Wing-Ford Band in Spectra of M Stars

    Get PDF
    We study the FeH Wing-Ford band at 9850 - 10200 Angstrons by means of the fit of synthetic spectra to the observations of M stars, employing recent model atmospheres. On the basis of the spectrum synthesis, we analyze the dependence of the band upon atmospheric parameters. FeH lines are a very sensitive surface gravity indicator, being stronger in dwarfs. They are also sensitive to metallicity (Allard & Hauschildt 1995). The blending with CN lines, which are stronger in giants, does not affect the response of the Wing-Ford band to surface gravity at low resolution (or high velocity dispersions) because CN lines, which are spread all along the spectrum, are smeared out at convolutions of FWHM \simgreat 3 Angstrons. We conclude that the Wing-Ford band is a suitable dwarf/giant indicator for the study of composite stellar populations.Comment: 23 pages + 11 figures in postscript format + 3 ps figures (Nos. 2, 6 and 7) available under request to [email protected]. Accepted for publication in The Astrophysical Journa
    corecore