6,381 research outputs found

    Cosmic Acceleration from Causal Backreaction with Recursive Nonlinearities

    Full text link
    We revisit the causal backreaction paradigm, in which the need for Dark Energy is eliminated via the generation of an apparent cosmic acceleration from the causal flow of inhomogeneity information coming in towards each observer from distant structure-forming regions. This second-generation formalism incorporates "recursive nonlinearities": the process by which already-established metric perturbations will then act to slow down all future flows of inhomogeneity information. Here, the long-range effects of causal backreaction are now damped, weakening its impact for models that were previously best-fit cosmologies. Nevertheless, we find that causal backreaction can be recovered as a replacement for Dark Energy via the adoption of larger values for the dimensionless `strength' of the clustering evolution functions being modeled -- a change justified by the hierarchical nature of clustering and virialization in the universe, occurring on multiple cosmic length scales simultaneously. With this, and with one new model parameter representing the slowdown of clustering due to astrophysical feedback processes, an alternative cosmic concordance can once again be achieved for a matter-only universe in which the apparent acceleration is generated entirely by causal backreaction effects. One drawback is a new degeneracy which broadens our predicted range for the observed jerk parameter j0Obsj_{0}^{\mathrm{Obs}}, thus removing what had appeared to be a clear signature for distinguishing causal backreaction from Cosmological Constant Λ\LambdaCDM. As for the long-term fate of the universe, incorporating recursive nonlinearities appears to make the possibility of an `eternal' acceleration due to causal backreaction far less likely; though this does not take into account gravitational nonlinearities or the large-scale breakdown of cosmological isotropy, effects not easily modeled within this formalism.Comment: 53 pages, 7 figures, 3 tables. This paper is an advancement of previous research on Causal Backreaction; the earlier work is available at arXiv:1109.4686 and arXiv:1109.515

    Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system

    Full text link
    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.Comment: 14 pages, 9 figure

    Accurate molecular energies by extrapolation of atomic energies using an analytic quantum mechanical model

    Full text link
    Using a new analytic quantum mechanical method based on Slater's Xalpha method, we show that a fairly accurate estimate of the total energy of a molecule can be obtained from the exact energies of its constituent atoms. The mean absolute error in the total energies thus determined for the G2 set of 56 molecules is about 16 kcal/mol, comparable to or better than some popular pure and hybrid density functional models.Comment: 5 pages, REVTE

    Use of small specimen creep data in component life management: a review

    Get PDF
    Small specimen creep testing techniques are novel mechanical test techniques that have been developed over the past 25 years. They mainly include the sub-size uniaxial test, the small punch creep test, the impression creep test, the small ring creep test and the two-bar creep test. This paper outlines the current methods in practice for data interpretation as well as the state-of-the-art procedures for conducting the tests. Case studies for the use of impression creep testing and material strength ranking of creep resistant steels are reviewed along with the requirement for the standardisation of the impression creep test method. A database of small specimen creep testing is required to prove the validity of the tests

    Analysis of Bonded Joints Between the Facesheet and Flange of Corrugated Composite Panels

    Get PDF
    This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded joint, along with a beam analogy model that provides the necessary boundary loading conditions to the joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results comparing the method to NASTRAN finite element model stress fields are provided illustrating the accuracy of the method

    Evaporation of a Kerr black hole by emission of scalar and higher spin particles

    Get PDF
    We study the evolution of an evaporating rotating black hole, described by the Kerr metric, which is emitting either solely massless scalar particles or a mixture of massless scalar and nonzero spin particles. Allowing the hole to radiate scalar particles increases the mass loss rate and decreases the angular momentum loss rate relative to a black hole which is radiating nonzero spin particles. The presence of scalar radiation can cause the evaporating hole to asymptotically approach a state which is described by a nonzero value of a∗≡a/Ma_* \equiv a / M. This is contrary to the conventional view of black hole evaporation, wherein all black holes spin down more rapidly than they lose mass. A hole emitting solely scalar radiation will approach a final asymptotic state described by a∗≃0.555a_* \simeq 0.555. A black hole that is emitting scalar particles and a canonical set of nonzero spin particles (3 species of neutrinos, a single photon species, and a single graviton species) will asymptotically approach a nonzero value of a∗a_* only if there are at least 32 massless scalar fields. We also calculate the lifetime of a primordial black hole that formed with a value of the rotation parameter a∗a_{*}, the minimum initial mass of a primordial black hole that is seen today with a rotation parameter a∗a_{*}, and the entropy of a black hole that is emitting scalar or higher spin particles.Comment: 22 pages, 13 figures, RevTeX format; added clearer descriptions for variables, added journal referenc

    Potential Eradication and Control Methods for the Management of the Ascidian Didemnum perlucidum in Western Australia

    Get PDF
    Assessments of the key indicator species for the West Coast Demersal Scalefish Resource (WCDSR; West Australian dhufish Glaucosoma hebraicum, Snapper Pagrus auratus and Baldchin groper Choerodon rubescens) in 2007 and 2009 demonstrated that the stocks were experiencing overfishing. Thus, between late 2007 and early 2010, substantial changes were made to the management of the commercial and recreational fisheries that exploit the WCDSR. These were designed to reduce catches of the entire suite of demersal scalefish species (and of each indicator species) by both the commercial and recreational sectors in the West Coast Bioregion (WCB) by at least 50 % of the 2005/06 levels (the catch benchmark), to allow stocks to recover

    Spinning Down a Black Hole With Scalar Fields

    Get PDF
    We study the evolution of a Kerr black hole emitting scalar radiation via the Hawking process. We show that the rate at which mass and angular momentum are lost by the black hole leads to a final evolutionary state with nonzero angular momentum, namely a/M≈0.555a/M \approx 0.555.Comment: 4 pages (including 3 postscript figures), Revtex, uses epsf.tex, twocolumn.sty and header.sty (included). Submitted to Physical Review Letter
    • …
    corecore