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Abstract 
This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet 

to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded 
joint, along with a beam analogy model that provides the necessary boundary loading conditions to the 
joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the 
flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results 
comparing the method to NASTRAN finite element model stress fields are provided illustrating the 
accuracy of the method. 

I. Introduction 
Preliminary design of corrugated panels requires the rapid consideration of a wide range of panel 

configurations (materials, layups, facesheet thicknesses, stiffener geometries, etc.) to determine the 
optimum design for a given set of loads. To assess the efficiency of a given panel design, ply-level 
stresses are used in one or more failure criteria to estimate the panel design’s minimum margin with 
respect to failure, given panel level loads. The standard method of determining ply-level stresses, finite 
element analysis, however, is not well suited for the rapid consideration of (sometimes) thousands of 
potential panel designs in which the geometry is not fixed. In contrast, the HyperSizer Structural Sizing 
Software (ref. 1) uses rapid, closed-form solution methods on the level of the panel, laminate, and ply to 
evaluate panel margins and determine the optimum lightweight design. This software still relies on a 
global finite element model to determine the panel level loads, but it calculates the internal stresses within 
the panel based on efficient analytical solutions. 

The present paper is concerned with the local stresses that arise within the bonded joint that exists 
between the facesheet and stiffener flanges in a composite corrugated stiffened panel. Existing 
HyperSizer capabilities analyzed corrugated panels using the ply-level stresses in each component of such 
a stiffened panel (e.g., stresses in the flange, web, crown, and facesheet), but did not consider stress 
concentrations due to the facesheet-stiffener bond. To address this limitation, the methodology described 
herein combines an existing bonded joint analysis capability within the software with a beam analogy 
analysis of the corrugated panel geometry. The beam analogy analysis provides the boundary loads, 
which vary based on the panel configuration, to the joint analysis. The joint analysis then calculates ply-
level in-plane and intralaminar stresses and adhesive stresses that arise in the joint between the facesheet 
and stiffeners, which can be used to determine ply-level margins. This new capability has been 
incorporated within HyperSizer, enabling sizing based on global load cases down to the level of the stress 
concentrations arising due to the bond of each stiffener in each panel. Results are presented that compare 
local stress concentrations predicted by HyperSizer to those predicted using continuum finite element 
models to represent the facesheet to stiffener flange joint of several corrugated panel configurations. 
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II. Joint Analysis Model 
The joint analysis model employed is based on Mortensen's unified stress analysis method (refs. 2 and 

3), which has been extended and implemented in the HyperSizer Joints composite bonded joint analysis 
software. Extensions include accommodation of transverse in-plane straining, hygrothermal loads, 
computation of the local in-plane and intralaminar stresses throughout the adherends, accommodation of 
pressure loading, and delamination prediction (refs. 4 to 9). Compared to other analytical (i.e., non-FEA) 
methods used for bonded joint analysis, the HyperSizer method is capable of handling more general 
situations, including various joint geometries, asymmetric and unbalanced laminates, and more general 
loading and boundary conditions. A wide range of joint types may be considered, and the adherends, 
which were originally modeled as classical laminates in cylindrical bending, are now considered to 
undergo ‘generalized cylindrical bending’, in which transverse straining is accommodated. Both linear 
and nonlinear behavior of an adhesive layer is admitted in the analysis. For linear analysis, the adhesive 
layer is modeled via a traction-separation law that responds similarly to the linear behavior cohesive 
elements within the ABAQUS finite element software (ref. 10). This can be used to simulate a physical 
adhesive layer present in the joint, or, for cases without a non-negligible adhesive layer, the traction-
separation model represents a zero-thickness cohesive layer that can be given a high penalty stiffness to 
hold the adherends together (ref. 11). Inclusion of nonlinear adhesive behavior in the analysis is 
accomplished through the use of a secant modulus approach for the nonlinear tensile stress–strain 
relationship in conjunction with a yield criterion. 

The equilibrium equations for each joint type are derived through direct imposition of force and 
moment equilibrium on joint elements, and by combination of the aforementioned equations and 
relations, a set of governing ordinary differential equations is obtained. The governing system of 
equations is solved numerically using Mortensen and Thomsen’s (ref. 3) ‘multi-segment method of 
integration,’ yielding laminate-level fields and adhesive stresses that vary along the joint in each 
adherend. After the governing equations are solved, the ply-level in-plane stress components in the 
adherends can be calculated from Classical Lamination Theory (CLT). After solving for the in-plane 
stresses, the intralaminar stress components in the adherends are obtained through integration of the 
point-wise equilibrium equations. The details of HyperSizer’s stress analysis method are described by 
Zhang et al. (refs. 5 and 8). It is important to recognize that the HyperSizer joint analysis method is very 
efficient; the execution time for a typical problem is approximately 1/40 sec. Furthermore, problem set up 
and post-processing is straightforward, enabling rapid consideration of a wide range of joint 
configurations for sizing optimization.  

In order to model the flange to facesheet joint within a composite corrugated panel, appropriate 
boundary loading conditions must be applied within the HyperSizer Joints analysis. As shown in figure 1, 
the analysis domain for a hat stiffened panel is the flange and facesheet region, where the closed span and 
web attachments to the analysis domain are accounted for through the boundary loading conditions. This 
region is, in essence, a bonded doubler, which can be analyzed by HyperSizer Joints. A two sheet 
corrugated panel (which has continuous flanges between the hats) is shown in figure 2. The analysis 
region is again a bonded doubler. The next section describes the determination of the appropriate 
boundary loads to apply (BCs #2 and #3 in figure 1 and BCs #1 and #4 in fig. 2) within the HyperSizer 
Joints analysis. 

III. General Solution for Boundary Loads 
The goal of this section is to determine the internal forces and moments in the components of a 

corrugated stiffened panel subjected to an applied shear force (V), an applied distributed load (force per 
unit length) due to internal pressure (P), and either an applied normal force (F) and moment (M) or a 
symmetry condition resulting in a normal reaction force (F) and moment (M) at point H, as shown in 
figure 3. Note that point H is the midpoint between the corrugations (see fig. 3). For a two sheet 
corrugated panel, which has no open span, Los is set to zero. A beam analogy model is used to determine 
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the internal forces and moments, the knowledge of which provides the unknown applied boundary 
conditions indicated in figures 1 and 2. The two separate boundary conditions (applied force and moment 
versus symmetry) are discussed in Sections III.A and III.B. It should be noted that in the following beam 
analogy model, the direction along the facesheet is referred to as the x-direction (fig. 3), while in the joint 
analysis, this is the y-direction (Figs. 1 and 2). 

In figure 3, member BD is referred to as the closed span (cs), member AB is referred to as the web 
(w), member AC is referred to as the crown (cr), member GB is referred to as the facesheet-flange 
combination (com), and member HG is referred to as the open span (os). Symmetry conditions are applied 
at points D and C that allow z-direction translation (w), but no x-direction translation (u) and no rotation. 
The model is restrained against w displacement at point B, the intersection between the hat flange and 
web. This choice was motivated by comparison to finite element analysis results for acreage deformation 
of a hat stiffened panel model subjected to pressure loading. Note that neither horizontal  
(x-direction) translation nor rotation is restrained at point B. 

 
Figure 1.—Analysis geometry for a composite hat stiffened panel facesheet to flange joint. 

 

 
Figure 2.—Analysis geometry for a composite two sheet stiffened panel facesheet to flange joint. 
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A. Applied Force and Moment Boundary Conditions between Corrugations 

A free body diagram of the analysis geometry is considered, as shown in figure 4. Applying global 
equilibrium, 

 0 0
2z z
SF B P V= → + − =∑  (1) 

 0 0x x xF D F C= → − + =∑  (2) 

 
2

. 0 0
2 8pt D D C x z cs
S SM M M hC V P M B L= → + + + − − − =∑  (3) 

 
 

 
 

 
 

Figure 3.—Analysis geometry for a hat stiffened panel 
 

 
Figure 4.—Global free body diagram of the hat stiffened panel analysis geometry. 
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Substituting for Bz in equation (3) using equation (1), 

 
2

0
2 2 8D C x cs cs
S S SM M hC V L P L M

⎛ ⎞⎛ ⎞+ + + − + − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (4) 

Next a free body diagram of member HGBD is considered (as shown in fig. 5), and equilibrium is 
applied, 

 0 0
2z z z
SF B BA P V= → − + − =∑  (5) 

 0 0x x xF D F BA= → − + =∑  (6) 

Combining equation (5) and (1) gives, 

 0zBA =  (7) 

and combining equation (6) and (2) gives, 

 x xBA C=  (8) 

Therefore, equilibrium has established the relationship among the forces in the members, as well as one 
equation (4) relating the moments. Considering Cx, MC, and MD to be the unknown quantities in the 
formulation, two additional equations are needed in addition to equation (4). These equations will be 
obtained by applying beam theory deformation equations while imposing continuity of rotations and  
x-direction displacements at point B. 

It is noted from the boundary condition at point D depicted in figure 3 that the x-direction 
displacement and the rotation of member BD at point D are zero. Considering the free body diagram of a 
section of member BD as shown in figure 6, and introducing a new x̂  coordinate direction, 

 

 
 

Figure 5.—Free body diagram of member HGBD (closed span, facesheet-flange 
combination, and open span). 

 
 

 
Figure 6.—Free body diagram of a section of member BD. 
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 ˆ0z csF V P x= → =∑  (9) 

 
2

.
ˆˆ 0
2pt D D cs cs
xM M M V x P→ − + − =∑  (10) 

Combining equations (9) and (10), 

 
2ˆ

2cs D
xM M P= +  (11) 

Beam theory (ref. 12) enables the internal moment within the closed span to be related to the second 
derivative of the z-direction deformation (w) of the web as, 

 ( ) ( )2 2

2
ˆ ˆ ˆ1

2ˆ D
cs cs cs cs

d w x M x xM P
E I E Idx

⎡ ⎤
= = +⎢ ⎥

⎢ ⎥⎣ ⎦
 (12) 

where Ecs is the effective plane strain Young’s modulus of the closed span in the x-direction, and Ics is the 
area moment of inertia of the closed span face normal to the x-direction. Note that the plane strain 
Young’s modulus differs from the standard Young’s modulus by a factor of (1 – vxy vyx)–1. For a 
composite laminate, this value can easily be determined from classical lamination theory. Integrating 
equation (12) and imposing the zero rotation boundary condition at point D gives, 

 ( ) 3ˆ ˆ1 ˆ
ˆ 6D

cs cs

dw x xM x P
dx E I

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
 (13) 

which allows the rotation at point B (measured as positive in the clockwise direction) to be written as, 

 
( ) 3ˆ

ˆ 6
cs D cs cs

B
cs cs cs cs

dw x L M L P L
dx E I E I
=

= θ = +  (14) 

The axial (x-direction) deformation at point B is due to the axial force in member BD, and can be written 
as, 

 x x
B cs cs

cs cs cs cs

D C Fu L L
E A E A

−
= − =  (15) 

where equation (2) has been employed. 
Next, equations for the rotation and x-direction displacement at point B will be developed by 

considering the deformation of members AC (crown) and AB (web). Equating these expressions with 
equations (14) and (15) will provide the two additional equations required to determine Cx, MC, and MD. 

It is noted from figure 3 that, although the boundary condition at point C allows z-direction 
translation, no rotation is permitted at this point. Thus, the bending and rotation of member AC (crown)  
is due to the constant internal moment, MC, while the axial deformation is due to the axial force, Cx (see  
fig. 7). Therefore, the rotation, z-direction displacement, and axial displacement at point A can be written 
as (ref. 12), 

 C cr
A

cr cr

M L
E I

θ =  (16) 
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2

2
C cr

A C
cr cr

M Lw w
E I

= +  (17) 

 cr
crcr

x
A L

AE
Cu −=  (18) 

where Ecr is the effective plane strain Young’s modulus of the crown in the x-direction, and Icr is the area 
moment of inertia of the crown face normal to the x-direction, and wC is the z-direction displacement at 
point C. 

The web-crown combination (member BAC) is dismembered as shown in figure 8. A new, primed 
coordinate system is introduced for the web (member AB), with the x′-direction along the web (figs. 8 
and 9). The section of member AB, shown in figure 10, is used to determine the internal moment, M(x′), 
by applying equilibrium, 

 ( ) ( ) 0sin. =′θ+′−→=∑ xCxMMM xCApt  (19) 

Solving for the internal moment,  

 ( ) ( )sinC xM x M C x′ ′= + θ  (20) 

Beam theory (ref. 10) enables the internal moment within the web to be related to the second derivative of 
the z′-direction deformation (w′) of the web as, 
 
 

 
 

Figure 7.—Free body diagram of a section of 
member AC (crown). 

 
 
 

 
 

Figure 8.—Free body diagram of dismembered member BAC (crown and web). 
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Figure 9.—Rotated free body diagram of  member AB 

(web). 

 
Figure 10.—Free body diagram of a section of member AB. 

 

 ( ) ( ) ( )
2

2
1 sinC x

w w w w

d w x M x
M C x

E I E Idx

′ ′ ′
′= = ⎡ + θ ⎤⎣ ⎦′

 (21) 

where Ew is the effective plane strain Young’s modulus of the web in the x′-direction, and Iw is the area 
moment of inertia of the web face normal to the x′-direction. Integrating this expression provides the first 
derivative of w′, which is equivalent to the rotation, 

 ( ) ( ) 12sin
2
11 CxCxM

IExd
xwd

xC
ww

+⎥⎦
⎤

⎢⎣
⎡ ′θ+′=

′
′′

 (22) 

where C1 is a constant of integration, which is determined by imposing continuity of rotations at point A. 
Noting that a positive internal moment in the web will result in a positive (clockwise) rotation, 

 ( )
1

0 C
xd

xwd
A =

′
=′′

=θ  (23) 

Equating equations (23) and (16), 

 
crcr

crC
IE
LMC =1  (24) 

Integrating equation (22) while employing equation (24) gives, 

 ( ) ( )
232

6
sin

2
Cx

IE
LMx

IE
Cx

IE
Mxw

crcr

crC

ww

x

ww

C +′+′θ
+′=′′  (25) 

where C2 is a constant of integration, which is found in terms of the web z′-direction deformation at point 
A, Aw′ , 
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 ( ) 20 Cwxw A =′==′′  (26) 

Similarly, the axial deformation of the web is written as, 

 ( ) ( )
A

ww

x ux
AE

Cxu ′+′
θ

=′′ cos  (27) 

where Au′  is the web x′-direction deformation at point A. The rotation equations relating the web primed 
coordinate system deformation and the unprimed coordinate system deformations are given by, 

 
( ) ( )

( ) ( )θ+θ=′
θ+θ−=′

cossin
sincos

wuw
wuu

 (28) 

Therefore, from equations (25) to (28), we have, 

 ( ) ( ) ( ) ( )θ+θ+′+′θ
+′=′′ cossin

6
sin

2
32 AA

crcr

crC

ww

x

ww

C wux
IE
LMx

IE
Cx

IE
Mxw  (29) 

 ( ) ( ) ( ) ( )θ+θ−′
θ

=′′ sincoscos
AA

ww

x wux
AE

Cxu  (30) 

Inverting equation (28) yields, 

 
( ) ( )

( ) ( )θ′+θ′=
θ′+θ′−=

cossin
sincos

wuw
wuu

 (31) 

which enables the x-direction deformation of the web at point B to be written as, 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )θθ+θ+
θ

+
θ

+

θ
+θθ−θ+

θ
−=

θ=′′+θ=′′−=θ′+θ′−=

sincossinsin
6

sin
2

sincossincoscos

sincossincos

23
2

22
2

AAw
crcr

crC
w

ww

x

w
ww

C
AAw

ww

x

wwBBB

wuL
IE

LML
IE

C

L
IE

MwuL
AE

C

LxwLxuwuu

 (32) 

Recognizing that sin2 (θ) + cos2 (θ) = 1 and substituting for uA in equation (32) using equation (18) gives,  

 

( ) ( ) ( ) ( )
crcr

crx
w

crcr

crC
w

ww

x
w

ww

C
w

ww

x
B AE

LCL
IE

LML
IE

CL
IE

ML
AE

Cu −
θ

+
θ

+
θ

+
θ

−=
sin

6
sin

2
sincos 3

2
2

2
 (33)

 

Equating equation (33) with the expression for uB determined from member BD, equation (15), 

( ) ( ) ( ) ( )
cs

cscs

x

crcr

crx
w

crcr

crC
w

ww

x
w

ww

C
w

ww

x L
IE

FC
AE
LCL

IE
LML

IE
CL

IE
ML

AE
C −

=−
θ

+
θ

+
θ

+
θ

−
sin

6
sin

2
sincos 3

2
2

2
 (34) 

Noting that the internal moment within the web will cause a positive (clockwise) rotation at point B, 
equations (22) and (24) can be used to write the web rotation at point B as, 



NASA/TM—2008-215438 10

 ( ) ( )
crcr

crC

ww

wx

ww

wC
B

w
IE
LM

IE
LC

IE
LM

xd
Lxwd

+
θ

+=θ=
′
=′′

2
sin 2

 (35) 

Equating equation (35) with the expression for θB determined from member BD, equation (14), gives, 

 ( ) 2 3sin
2 6

x wC w C cr D cs cs

w w w w cr cr cs cs cs cs

C LM L M L M L P L
E I E I E I E I E I

θ
+ + = +  (36) 

Equations (4), (36), and (34) now form three algebraic equations for the three unknown quantities, Cx, 
MC, and MD. Reiterating these equations, we have: 

Equilibrium 

 
2

0
2 2 8D C x cs cs
S S SM M hC V L P L M

⎛ ⎞⎛ ⎞+ + + − + − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (37) 

Rotation Continuity at Point B 

 ( ) 2 3sin
2 6

x wC w C cr D cs cs

w w w w cr cr cs cs cs cs

C LM L M L M L P L
E I E I E I E I E I

θ
+ + = +  (38) 

x-Displacement Continuity at Point B 

( ) ( ) ( ) ( )2 2
2 3cos sin sin sin

2 6
x C x C cr x cr x

w w w w cs
w w w w w w cr cr cr cr cs cs

C M C M L C L C F
L L L L L

E A E I E I E I E A E A
θ θ θ θ −

− + + + − =  (39) 

To solve these three equations, we rewrite equation (39) as, 

( ) ( ) ( ) ( )

11 2

2 3 2 2cos sin sin sin
6 2

w w w w crcr cs cs
x C

w w w w cr cr cs cs w w cr cr cs cs
BK K

L L L L LL L FL
C M

E A E I E A E A E I E I E A

⎡ ⎤ ⎡ ⎤θ θ θ θ −
− + − − + + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (40) 

and identify the terms, 

 ( ) ( )2 3 2

1
cos sin

6
w w cr cs

w w w w cr cr cs cs

L L L L
K

E A E I E A E A
θ θ

= − + − −  (41) 

 ( ) ( )2

2
sin sin

2
w w cr

w w cr cr

L L L
K

E I E I
θ θ

= +  (42) 

 1
cs

cs cs

FLB
E A
−

=  (43) 

Thus, from equation (40), we have, 
 



NASA/TM—2008-215438 11

 1 1

2 2
C x

B KM C
K K

= −  (44) 

Similarly, equation (38) can be written as,  

 ( )

23 54

2 3sin
2 6
ww cr cs cs

C x D
w w cr cr w w cs cs cs cs

BK KK

LL L L P L
M C M

E I E I E I E I E I

⎡ ⎤⎡ ⎤ θ ⎡ ⎤
+ + = +⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (45) 

with the following terms identified, 

 3
w cr

w w cr cr

L LK
E I E I

= +  (46) 

 ( )2

4
sin

2
w

w w

L
K

E I
θ

=  (47) 

 5
cs

cs cs

LK
E I

=  (48) 

 
3

2 6
cs

cs cs

P LB
E I

=  (49) 

Thus, from equation (45) combined with equation (44) we have, 

 1 3 1 34 2

5 2 5 2 5 5
D x

K K B KK BM C
K K K K K K

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
 (50) 

Substituting equations (50) and (44) into the equilibrium equation (37) gives, 

2
1 3 1 34 2 1 1

5 2 5 2 5 5 2 2
0

2 2 8x x x cs cs
K K B KK B B K S S SC C hC V L P L M

K K K K K K K K
⎛ ⎞⎡ ⎤ ⎛ ⎞− + − + − + + − + − − =⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎣ ⎦ ⎝ ⎠

 (51) 

which can be solved for xC  in terms of known quantities, 

 

2
31 2

2 5 5

1 34 1

5 2 5 2

1
8 2 2cs cs

x

KS S S B BM P L V L
K K K

C K KK K h
K K K K

⎛ ⎞ ⎛ ⎞⎛ ⎞+ − + − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠=
− − +

 (52) 

The remaining unknowns, MC and MD, can then be determined from equations (44) and (50). 
The forces and moments in each component are given in terms of the three unknowns as follows, 

 cs xF F C= −  (53) 

 ˆcsV Px=  (54) 
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2ˆ

2cs D
PxM M= +  (55) 

 cr xF C=  (56) 

 0crV =  (57) 

 cr CM M=  (58) 

 ( )cosw xF C= θ  (59) 

 ( )sinw xV C= θ  (60) 

 ( )sinw C xM M C x′= + θ  (61) 

where Fi denotes an axial force and Vi denotes a shear force. It is noted that the crown has constant axial 
force and moment and zero shear force, the web has constant axial and shear force and a linear moment, 
and the closed span has constant axial force, linear shear force, and quadratic moment. 

It should be noted that the areas and moments of inertia of each component are linearly dependent on 
the out-of-plane dimension of the hat (i.e., the dimension in the y-direction in fig. 3). However, examining 
equations (37) to (39), it is clear that this dimension drops out the governing equations. Thus, it can be 
concluded that if the applied moment, M, applied shear force, V, and applied axial force, F, are given as 
force and moment resultants rather than a moment and forces, and the distributed force due to pressure is 
given as a true pressure rather than a force per unit length, the force and moment solutions in equations 
(53) to (61) will be resultants as well. 

B. Symmetry Boundary Condition between Corrugations 

Next a symmetry boundary condition is considered at the midpoint between the panel corrugations, 
point H in figure 11. The corresponding free body diagram is identical to that shown in figure 4. In this 
case, the normal force and moment at point H are unknown reactions, while the shear force at point H is a 
known applied load. The primary distinction from the derivation in the previous section is that the 
deformation of the open span and face-sheet flange combination must now be considered in order to 
determine the unknown reactions at point H. 

A free body diagram of a section of member HGB is shown in figure 12, where j takes on the value of 
os or com depending on whether the section cut is taken within the open span or flange/facesheet 
combination. A new x  coordinate direction has been introduced. Applying equilibrium,  

 0z jF V V P x= → = −∑  (62) 

 
2

. 0
2pt H j j
xM M P M V x→ + − + =∑  (63) 

Substituting equation (62) into equation (63) gives, 
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Figure 11.—Analysis geometry for a hat stiffened panel—symmetry at point H. 
 

 
Figure 12.—Free body diagram of a section of member HGB. 

 
 

 
2

2j
xM M P V x= + −  (64) 

Once again utilizing beam theory (ref. 12), the second derivative of the z-direction deformation within the 
open span can be written as, 

 ( ) ( )2 2

2
1

2
os os

os os os os

d w x M x xM P V x
E I E Idx

⎡ ⎤
= = + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (65) 

Integrating equation (65) and imposing the zero rotation boundary condition at point H ( 0x = ) gives, 

 ( ) 3 21
6 2

os

os os

dw x x xMx P V
dx E I

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (66) 

which allows the rotation at point G (measured as positive in the clock-wise direction) to be written as, 

 
( ) 3 2

6 2
os os os os os

G
os os os os os os

dw x L ML PL VL
dx E I E I E I
=

= −θ = + −  (67) 

Similarly, applying beam theory (ref. 12) to the flange/facesheet combination gives, 
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 ( ) ( )2 2

2
1

2
com com

com com com com

d w x M x xM P V x
E I E Idx

⎡ ⎤
= = + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (68) 

Integrating equation (68), 

 ( ) 3 2

6 2
com

com com com com com com

dw x Mx Px V x C
dx E I E I E I

= + − +  (69) 

where C  is a constant of integration which can be determined by applying equation (69) to determine the 
rotation at point G (measured as positive in the clock-wise direction), 

 
( ) 3 2

6 2
com os os os os

G
com com com com com com

dw x L ML PL VL C
dx E I E I E I

=
= −θ = + − +  (70) 

and equating equations (70) and (67), 

 
3 2 3 2

6 2 6 2
os os os os os os

os os os os os os com com com com com com

ML PL VL ML PL VLC
E I E I E I E I E I E I

= + − − − +  (71) 

The rotation at point B (measured as positive in the clock-wise direction) can then be written as, 

 
( ) ( ) ( ) ( )3 2

6 2
com os com os com os com os com

B
com com com com com com

dw x L L M L L P L L V L L
C

dx E I E I E I
= + + + +

= −θ = + − +  (72) 

Substituting equation (71) into equation (72), 

 
( ) ( )

6

3

3 23 23 2

6 2

os com
B

os os com com

K

os com os os com osos os

com com os os com com os os

B

L LM
E I E I

L L L L L LL VLP V
E I E I E I E I

⎡ ⎤
θ = − −⎢ ⎥

⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + −
⎢ ⎥ ⎢ ⎥+ − − + +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (73) 

with the following terms identified, 

 6
os com

os os com com

L LK
E I E I

= − −  (74) 

 
( ) ( )3 23 23 2

3 6 2
os com os os com osos os

com com os os com com os os

L L L L L LL VLP VB
E I E I E I E I

⎡ ⎤ ⎡ ⎤+ − + −
⎢ ⎥ ⎢ ⎥= − − + +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (75) 

Equation (73) can then be written as, 

 6 3B MK Bθ = +  (76) 
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while equation (14) can be written as, 

 5 2B DM K Bθ = +  (77) 

where equations (48) and (49) have been used. Equating equations (76) and (77) gives, 

 5 32

6 6 6
D

K BBM M
K K K

= + −  (78) 

Substituting equation (78) into equation (37) provides the replacement for the equilibrium equation in 
terms of the three unknowns, Cx, MC, and MD, 

Equilibrium 

 
2

5 32

6 6 6
1 0

2 2 8D C x cs cs
K BS S S BM M hC V L P L
K K K

⎛ ⎞⎛ ⎞ ⎛ ⎞− + + + − + − − + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
 (79) 

Noting from figure 4 that the axial force in member HGB is constant and equal to F, the axial 
displacement at point G can be related to that at point B as, 

 com
G B

com com

Lu u F
E A

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (80) 

while the axial displacement at point H can be related to that at point G as,  

 os
H G

os os

Lu u F
E A

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (81) 

Substituting the expression for uB obtained from the closed span, equation (15), into equation (80) and the 
result into equation (81) yields, 

 0cs cs com os
H x

cs cs cs cs com com os os

L L L Lu C F F F
E A E A E A E A

= − − − =  (82) 

where the zero axial displacement boundary condition at point H (see fig.11) has been imposed. Solving 
equation (82) for F yields, 

 

7

cs

cs cs
x

cs com os

cs cs com com os os

K

L
E A

F C L L L
E A E A E A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

 (83) 

or 

 7xF C K=  (84) 
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with 

 7

cs

cs cs

cs com os

cs cs com com os os

L
E A

K L L L
E A E A E A

=
+ +

 (85) 

Substituting equation (84) into equation (39) provides the replacement for equation (39), 

x-Displacement Continuity at Point B 

 

( ) ( ) ( ) ( )2 2
2 3

7

cos sin sin sin
2 6

x C x C cr x cr
w w w w

w w w w w w cr cr cr cr

x x
cs cs

cs cs cs cs

C M C M L C LL L L L
E A E I E I E I E A
C C KL L

E A E A

θ θ θ θ
− + + + −

= −

 (86) 

The rotation continuity equation (38) remains valid. 
To solve equations (79), (86), and (38) for the three unknowns, Cx, MC, and MD, equation (86) is 

rewritten as, 

 7
1 2

x cs
x C

cs cs

C K LC K M K
E A

−
+ =  (87) 

where equations (41) and (42) have been employed. Upon rearrangement, equation (87) becomes, 

 
1

1

7
1 2 0cs

x C
cs cs B

K

K LC K M K
E A ′

′

⎛ ⎞
+ + =⎜ ⎟

⎝ ⎠
 (88) 

and replaces equation (44) when written in the form, 

 1 1

2 2
C x

B KM C
K K
′ ′

= −  (89) 

with, 

 7
1 1

cs

cs cs

K LK K
E A

′ = +  (90) 

and,  

 1 0B′ =  (91) 

Substituting equation (89) into equation (45), 

 1 3 1 34 2

5 2 5 2 5 5
D x

K K B KK BM C
K K K K K K

⎡ ⎤′ ′
= − + −⎢ ⎥

⎣ ⎦
 (92) 
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Substituting equation (92) into equation (78), the unknown reaction moment at point H can be written as a 
function of Cx,  

 1 3 1 3 34

6 2 6 2 6 6
x

K K B K BKM C
K K K K K K
⎡ ⎤′ ′

= − + −⎢ ⎥
⎣ ⎦

 (93) 

Substituting equation (92), and (89) into the equilibrium equation (79), 

 

1 3 1 34 2 1 1

5 2 5 2 5 5 2 2
2

1 3 1 3 34

6 2 6 2 6 6

2

0
2 8

x x x cs

cs x

K K B KK B B K SC C hC V L
K K K K K K K K

K K B K BS S KP L C
K K K K K K

⎡ ⎤′ ′ ′ ′ ⎛ ⎞− + − + − + + −⎢ ⎥ ⎜ ⎟
⎝ ⎠⎣ ⎦

⎛ ⎞ ⎡ ⎤′ ′
+ − − − − + =⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠

 (94) 

This equation replaces equation (51) and can be solved for Cx, 

 

2
3 3 31 2

2 5 6 5 6

1 3 1 34 1 4

5 2 5 2 6 2 6

1
8 2 2cs cs

x

K K BS S S B BP L V L
K K K K K

C K K K KK K Kh
K K K K K K K

⎛ ⎞ ⎛ ⎞′⎛ ⎞− + − − + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠= ′ ′′
− − + − +

 (95) 

Equation (95) replaces equation (52) for the present case where symmetry is specified at point H (see 
fig.11) and the reaction normal force, F, and moment at point H, M, are unknown. Once xC  is 
determined, F can be calculated from equation (84) and M can be calculated from equation (93). 

The forces and moments in the open span and facesheet-flange combination are given by, 

 com osF F F= =  (96) 

 com osV V V Px= = −  (97) 

 
2

2com os
PxM M M Vx= = − +  (98) 

It should be noted that equations (96) to (98) are valid for the applied force and moment boundary 
conditions described in section III.A. 

IV. Results and Discussion 
Five verification examples are presented below comparing the current solution within HyperSizer to 

NASTRAN finite element stress results. The first four cases consider hat stiffened and two sheet 
corrugated panels, with isotropic adherends, subjected to tensile and moment loads at point H. A final 
example then considers a composite hat stiffened panel subjected to internal pressure with the symmetry 
condition applied at point H. 

A. Example 1: Hat Panel Loaded with Tensile Force 

The first example problem considers a hat stiffened panel subjected to a tensile force resultant of 
1 lb/in transverse to the direction of the hat stiffeners. It is assumed that the hat stiffeners are bonded to 
the face sheet with an epoxy adhesive. The problem dimensions and isotropic material properties are 
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summarized in figure 13. Figure 14 shows a plane strain NASTRAN finite element model of the problem, 
illustrating the deformed shape. The resulting shear stress, τyz, within the facesheet to flange joint region 
is shown in figure 15(a). Figure 15(b) compares the shear stress plotted along the middle of the adhesive 
(dashed line in fig. 15(a)) in the finite element solution with the HyperSizer Joints adhesive shear stress 
solution. As shown, the agreement is excellent. 

 
 

Variable Designs 

 Value 

Unit weight (lb/ft2) 3.493 

Top face—Thickness (in.) 0.1 

Core web—Thickness (in.) 0.09 

Bottom face—Thickness (in.) 0 

Panel—Height (in.) 1.747 

Corrugation— Spacing (in.) 4 

Bottom crown—Width (in.) 0.8 

Core web—Angle (degrees) 82.24 

Top flange—Width, hat only (in.) 2.079 

Top clear span—Free Width (in.) 0.6969 

Top flange—Thickness (in.) 0.09 

Bottom crown—Thickness (in.) 0.09 

 
Facesheet and Hat: Aluminum Adhesive: Epoxy 
E = 10 Msi E = .445 Msi 
G = 3.846 Msi G = .165 Msi 
ν = 0.3 ν = 0.35 
 Thickness = 0.009 in. 

 
Figure 13.—Example 1 and 2 hat stiffened panel parameters. 

 
 
 
 
 

 
 

Figure 14.—NASTRAN finite element model deformed shape for example 1 hat stiffened panel. 
 
 

Conceptual hat stiffened panel geometry 

To-scale hat stiffened panel 
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(a)  

(b)  
y (in.) 

 
Figure 15.—Shear stress, τyz, (a) in NASTRAN finite element model (b) plotted along adhesive dashed line in 

(a)),  comparing finite element model with HyperSizer Joints. 
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Figure 16.—Peel stress, σzz, (a) in NASTRAN finite element model (b) plotted along adhesive dashed 
line in (a)),  comparing finite element model with HyperSizer Joints. 

 
Figure 16(a) shows the peel stress field in the finite element model solution, while figure 16(b) 

compares the peel stress along the adhesive (dashed line in fig. 16(a)) with the HyperSizer Joints solution. 
The agreement is excellent near the free edge of the hat flange, while in the web region, where the peel 
stress is lower, there is some discrepancy. This is expected as the HyperSizer Joints model considers only 
a bonded doubler (see fig. 1) and accounts for the presence of the stiffener web only as an effective 
boundary load. As the stiffener becomes thicker, and less shell-like, one would expect such effective 
boundary loads to be less representative of a continuum finite element solution. 

B. Example 2: Hat Panel Loaded with Applied Moment 

The second example problem considers the same hat stiffened panel, but now it is subjected to a 
moment resultant of –1 in.-lb/in. As before, the problem dimensions and material properties are 
summarized in figure 13. Figure 17 shows a plane strain NASTRAN finite element model of the problem, 
illustrating the deformed shape. The resulting shear stress, τyz, within the facesheet to flange joint region 
is shown in figure 18(a). Figure 18(b) compares the shear stress plotted along the middle of the adhesive 
in the finite element solution (as indicated by the dashed line) with the HyperSizer Joints adhesive shear 
stress solution. As shown, the agreement is excellent. 



NASA/TM—2008-215438 21

 
 

Figure 17.—NASTRAN finite element model deformed shape for example 2 hat stiffened panel. 
 

(a)  

(b)  
y (in) 

 
Figure 18.—Shear stress, τyz, (a) in NASTRAN finite element model (b) plotted along adhesive dashed line in (a)), 

comparing finite element model with HyperSizer Joints. 
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Figure 19.—Peel stress, σzz, (a) in NASTRAN finite element model (b) plotted along adhesive dashed line in (a)), 

comparing finite element model with HyperSizer Joints. 
 
Figure 19(a) shows the peel stress field in the finite element model solution, while figure 19(b) 

compares the peel stress along the adhesive with the HyperSizer Joints solution. The agreement is 
excellent near the free edge of the hat flange, while, once again, in the web region, where the peel stress is 
lower, there is agreement is not as good. 

C. Example 3: Two Sheet Corrugated Panel Loaded with Tensile Force 

The third example problem considers a two sheet corrugated stiffened panel subjected to a force 
resultant of 1 lb/in. As shown in figure 20, a two sheet corrugated panel is similar to a hat stiffened panel, 
with the difference being the fact the two sheet has continuous flanges. The problem dimensions and 
material properties are summarized in figure 20. Figure 21 shows a plane strain NASTRAN finite element 
model of the problem, illustrating the deformed shape. The resulting shear stress, τyz, within the facesheet 
to flange joint region is shown in figure 22(a). Figure 22(b) compares the shear stress plotted along the 
middle of the adhesive in the finite element solution with the HyperSizer Joints adhesive shear stress 
solution. As shown, the agreement is excellent. 
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Figure 23(a) shows the peel stress field in the finite element model solution, while figure 23(b) 
compares the peel stress along the adhesive with the HyperSizer Joints solution. As shown, there is a 
significant discrepancy between the HyperSizer Joints solution and the finite element model in this case. 
While both solutions show a trough and a peak, the location of these features is not consistent. Again, the 
approximate way in which the presence of the web is accounted for in the HyperSizer Joints solution (as 
an effective boundary load) is the likely cause of this discrepancy. 

 
 

 
Variable Designs 

 Value 

Unit weight (lb/ft2) 3.749 

Top face—Thickness (in.) 0.1 

Core web—Thickness (in.) 0.09 

Bottom face—Thickness (in.) 0 

Panel—Height (in.) 1.747 

Corrugation—Spacing (in.) 4 

Bottom crown—Width (in.) 0.8 

Core web—Angle (degrees) 83.68 

Top flange—Width, hat only (in.) 2.855 

Top clear span—Free Width (in.) 0 

Top flange—Thickness (in.) 0.09 

Bottom crown—Thickness (in.) 0.09 

 
Facesheet and hat: Aluminum Adhesive: Epoxy 
E = 10 Msi E = .445 Msi 
G = 3.846 Msi G = .165 Msi 
ν = 0.3 ν = 0.35 
 Thickness = 0.009 in. 

 
Figure 20.—Example 3 and 4 two sheet corrugated stiffened panel parameters. 

 
 

 
 

Figure 21.—NASTRAN finite element model deformed shape for example 3 two sheet corrugated 
stiffened panel. 

Conceptual two-sheet stiffened geometry 

To-scale two-sheet stiffened panel 
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(a)  

(b)  
y (in) 

 
Figure 22.—Shear stress, τyz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in (a)), 

comparing finite element model with HyperSizer Joints. 
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(a)  

(b)  
y (in.) 

 
Figure 23.—Peel stress, σzz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in 

(a)), comparing finite element model with HyperSizer Joints. 

 

D. Example 4: Two Sheet Corrugated Panel Loaded with Applied Moment 

The fourth example problem considers the same two sheet corrugated stiffened panel, but now it is 
subjected to a moment resultant of –1 in.-lb/in. As before, the problem dimensions and material properties 
are summarized in figure 20. Figure 24 shows a plane strain NASTRAN finite element model of the 
problem, illustrating the deformed shape. The resulting shear stress, τyz, within the facesheet to flange 
joint region is shown in figure 25(a). Figure 25(b) compares the shear stress plotted along the middle of 
the adhesive (dashed line in fig. 25(a)) in the finite element solution with the HyperSizer Joints adhesive 
shear stress solution. As shown, the agreement is excellent. 

Figure 26(a) shows the peel stress field in the finite element model solution, while figure 26(b) 
compares the peel stress along the adhesive with the HyperSizer Joints solution. The agreement, while 
better than that exhibited by the two sheet panel subjected to the applied force resultant, still shows some 
discrepancy with the finite element results. 
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Figure 24.—NASTRAN finite element model deformed shape for example 3 two sheet 
corrugated stiffened panel. 
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Figure 25.—Shear stress, τyz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in 

(a)), comparing finite element model with HyperSizer Joints. 
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Figure 26.—Peel stress, σzz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in 
(a)), comparing finite element model with HyperSizer Joints 

 
 

 

E. Example 5: Composite Hat Stiffened Panel Loaded with Pressure 

The final example problem considers a composite hat stiffened panel subjected to a uniform pressure 
load of 10 psi. The problem dimensions and material properties are summarized in figure 27. The chosen 
composite is a typical graphite/epoxy fabric with all zero plies. This configuration was chosen for the 
example problem so that the same problem could be solved in a 2–D plane strain FEA. A composite with 
off-axis plies would require a 3–D finite element model for comparison, which was not constructed for 
this study. Figure 28 shows the plane strain NASTRAN finite element model for the problem. As shown 
in figure 29, a NASTRAN plate finite element model was also constructed for this problem to provide 
further verification. 

Figure 30 shows the plane strain finite element model solution to this problem, illustrating the 
deformed shape. For comparison, figure 31 shows the deformed shape resulting from the HyperSizer 
closed form method. The HyperSizer results for min and max deflection at the center of the open span 
(where the deflections are greatest) are within 2.5 percent of both FEA results. Figures 32 and 33 compare 
the moment resultant and shear force resultant solutions of the closed form HyperSizer method and the 

y (in.) 
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plate finite element model. Clearly, the agreement is excellent. A comparison between the plane strain 
FEA and the current method for the adhesive shear stress, τyz, is shown in figure 34. Figure 35 shows a 
similar comparison of the peel stress in the adhesive. In both cases, the current method shows excellent 
agreement with the plane strain finite element model, even in the vicinity of the web. This better 
correlation of the peel stress in the web region (compared to the previous example results) may be due to 
the thinner stiffener used in this example. This thinner geometry tends to make the hat stiffener act more 
like a shell, which in turn makes the effective load boundary conditions used to account for the web more 
representative. 

 
 
 
 
 
 
 
 
 

Variable Designs 

 Value 

Unit weight (lb/ft2) 1.174 

Top face—thickness (in.) 0.098 

Core web—thickness (in.) 0.028 

Bottom face—thickness (in.) 0 

Panel—height (in.) 1.747 

Corrugation—spacing (in.) 4 

Bottom crown—width (in.) 0.8 

Core web—angle (degrees) 82.24 

Top flange—width, hat only (in.) 2.079 

Top clear span—free width (in.) 0 

Top flange—thickness (in.) 0.028 

Bottom crown—thickness (in.) 0.028 

 
 

Facesheet and hat: Graphite epoxy fabric Adhesive: Epoxy 
E1 = 11 Msi; E2 = 10.1 Ms E = .445 Msi 
G12 = G13 = G23 = 0.76 Msi G = .165 Msi 
ν12 = 0.0363 ν = 0.35 
Ply thickness = 0.014 in. Thickness = 0.009 in. 
 
Facesheet layup Hat flange, web, crown layup 
7 Plies; [07] – total thickness = 0.098 in. 2 Plies; [02] – Total Thickness = 0.028 in. 
 
Loading 
Pressure = 10 psi 

 
Figure 27.—Example 5 composite fabric corrugated stiffened panel parameters. 

Conceptual hat stiffened panel geometry 

To-scale composite hat stiffened panel 
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Figure 28.—Plane strain FEA mesh for hat panel subjected to pressure. 
 
 
 

 
 

Figure 29.—Plate FEA mesh for hat panel subjected to pressure. 
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Figure 30.—Plane strain FEA model deformed shape for example 5 composite hat stiffened panel with applied 
pressure.  

 
 
 
 
 

 
 

Figure 31.—Deformed shape from the current closed form formulation (scale factor different than in fig. 28). 
 
 
 

Pressure = 10 psi 

Deflection at center of Open Span: 
Plane strain FEA:  0.00288 in. 
Plate FEA: 0.00300 in. 
HyperSizer: 0.00295 in. 
 

Deflection at center of Closed Span: 
Plane Strain FEA:  –0.000616 in. 
Plate FEA: –0.000629 in. 
HyperSizer: –0.000580 in. 
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(b)  
Distance along facesheet, in. 

 
Figure 32.—Moment resultant (a) in NASTRAN plate finite element model (b) plotted along facesheet comparing the 

plate FEA with HyperSizer.  
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(a)  

(b)  
Distance along facesheet, in. 

 
Figure 33.—Shear force resultant (a) in NASTRAN plate finite element model (b) plotted along facesheet comparing 

the plate FEA with HyperSizer.  
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Figure 34.—Shear stress, τyz, plotted along adhesive, comparing finite element model with HyperSizer Joints. 
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Figure 35.—Peel stress, σzz, plotted along adhesive, comparing finite element model with HyperSizer Joints. 
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V. Conclusion 
A method for the rapid analysis of facesheet to flange bonded joints in composite corrugated panels 

has been developed. The bonded joint analysis is based on the HyperSizer Joints methodology (refs. 4 to 
9), which is an analytical approach for determining the stress fields arising in the joint adherents and 
adhesive. In order to obtain the boundary loads specific to a given corrugated panel needed for application 
within the HyperSizer Joints analysis, a beam analogy model has been developed. This beam analogy 
model allows for a moment resultant and normal and shear force resultants, as well as pressure, to be 
applied, the magnitudes of which (for instance) can be obtained from a global finite element loads model. 
Thus, starting on this global scale, the loads can be localized and applied to the corrugated panel flange to 
facesheet bonded joint, and the local ply-level in-plane and intralaminar stress fields can be calculated. 
Ply-level margins of safety can then be determined based on ply-level failure criteria, and the viability of 
a given corrugated panel design can be evaluated. This new capability has been incorporated within the 
HyperSizer Structural Sizing Software (ref. 1), enabling a new level of fidelity in the software’s 
corrugated panel design capability. 

Results comparing the method to finite element analysis for monolithic and composite hat stiffened 
and two sheet corrugated panels were presented. It was shown that the method predicts joint adhesive peel 
stresses that match well with the finite element result in most cases. The predicted joint adhesive shear 
stresses match very well with the finite element results in all cases examined. The main discrepancy 
between the method and the finite element peel stress results occurred at the point where the web 
intersects the flange at an angle (see fig. 3). This angle intersection geometry is accurately captured in the 
finite element model, while in the joint analysis, an effective boundary load is applied at this point and the 
detailed local stress field induced by the web angle within the continuum finite element analysis is not 
captured. It is thus expected that the predicted stress fields would be more approximate in this region. 
This discrepancy was not observed in the final example presented, involving pressure applied to a hat 
stiffened panel with a thinner stiffener flange. In sum, the method has been shown to give quite accurate 
results in an efficient closed form suitable for structural optimization problems in which thousands of 
potential corrugated panel configurations must be considered rapidly. 
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