1,511 research outputs found

    Catchment Care - Developing an Auction Process for Biodiversity and Water Quality Gains. Volume 1 - Report

    Get PDF
    This report describes the design, development and trial of catchment care. Catchment Care is an auction-based system which aims to increase the cost effectiveness of funds for private on-ground natural resource management actions.Water;Australia;Natural Resource Management;Catchment Care; auction.

    Catchment Care - Developing an Auction Process for Biodiversity and Water Quality Gains. Volume 2 - Appendices

    Get PDF
    A Market-Based Instrument Pilot Project. Report to the Onkaparinga Catchment Water Management Board.Water;Australia;Natural Resource Management;Catchment Care; auction, market-based instruments.

    Water and Wastewater Management (2011)

    Get PDF
    The purpose of this manual is to provide a resource for both new and experienced water board members and municipal officials who have little or no formal training for the job

    Evaluating Watershed Condition: Bottom Up Vs. Top Down Approaches?

    Get PDF
    Habitat degradation has been identified as one of the major factors affecting the declines of fishes in the Columbia River Basin. The condition of physical habitat and the biotic integrity of stream systems are often directly correlated with substantial alterations to key landscape attributes. As such, numerous approaches to measure watershed condition have been developed. Here, we compare two separate measures of watershed condition: 1) a GIS-based measure of condition, i.e., top down; and 2) a ground based assessment of condition, i.e., bottom up), using field data collected across 1200 sites in the Interior Columbia River Basin under the PIBO Effectiveness Monitoring Project. With our GIS approach, we integrate land management and natural disturbance from watershed upstream of sample reaches into an overall watershed condition score. With our bottom-up approach, we integrate stream temperature data, indices of macroinvertebrate health, and an index of physical habitat condition from reach-level field data into an overall condition score. Our results indicate significant differences in assessments of condition across the two methods, as the GIS approach ranked considerably more watersheds with management activities into a low condition category than found in the bottom-up approach. Conversely, the GIS approach also categorized most watersheds with no or minimal management activities, i.e., reference, as low risk, while the field-based, bottom up approach illustrated a wide range of condition of reference sites due to natural disturbances. Our results suggest GIS-based approaches tended to quantify the ‘risk’ rather than condition within watersheds. The bottom-up approach tended to quantify actual conditions within streams, without consideration of potential risks associated with land management activities. Here, we advocate the most beneficial approach that would be some combination of the two to help guide and prioritize restoration activities to enhance habitat conditions and minimize risk of catastrophic disturbances

    Quantifying Temporal Variability in Stream Habitat Data: Implications for Restoration and Monitoring

    Get PDF
    Quantifying natural and anthropogenic-induced levels of temporal variability is essential for robust trend analyses and for evaluating the effectiveness of restoration activities or changed management actions. Here, we used data collected as part of the Pacfish/Infish Biological Effectiveness Monitoring Project to evaluate the extent of temporal variability in instream habitat collected at the reach scale. We integrated habitat data collected yearly (2001-2009) at 50 sites experiencing a range of management activities into our analyses to better understand the consistency of temporal variability in watersheds with inherently different landscape characteristics and disturbance regimes. We initially decomposed variance estimates to remove site-to-site variability, sampling error, and year effects and use the remaining variance as a measure of site-specific temporal variability. We then relate this temporal variability to landscape, management, and climate attributes at multiple scales to better understand which characteristics result in more or less variability in habitat attributes at specific sites. Our results suggest temporal variability differs significantly across individual sites and attributes within sites, indicating our ability to detect significant changes as a result of management changes and/or restoration efforts are context dependent. The spatial scale of landscape attributes, e.g., stream buffer vs. catchment, related to temporal variability also varied across individual attributes. Our efforts highlight the importance of considering site specific measures of temporal variability as they relate to specific restoration and management goals

    Crosstalk among lncRNAs, microRNAs and mRNAs in the muscle ‘degradome’ of rainbow trout

    Get PDF
    In fish, protein-coding and noncoding genes involved in muscle atrophy are not fully characterized. In this study, we characterized coding and noncoding genes involved in gonadogenesis-associated muscle atrophy, and investigated the potential functional interplay between these genes. Using RNA- Seq, we compared expression pattern of mRNAs, long noncoding RNAs (lncRNAs) and microRNAs of atrophying skeletal muscle from gravid females and control skeletal muscle from age-matched sterile individuals. A total of 852 mRNAs, 1,160 lncRNAs and 28 microRNAs were differentially expressed (DE) between the two groups. Muscle atrophy appears to be mediated by many genes encoding ubiquitin- proteasome system, autophagy related proteases, lysosomal proteases and transcription factors. Transcripts encoding atrogin-1 and mir-29 showed exceptional high expression in atrophying muscle, suggesting an important role in bulk muscle proteolysis. DE genes were co-localized in the genome with strong expression correlation, and they exhibited extensive ‘lncRNA-mRNA’, ‘lncRNA-microRNA’, ‘mRNA-microRNA’ and ‘lncRNA-protein’ physical interactions. DE genes exhibiting potential functional interactions comprised the highly correlated ‘lncRNA-mRNA-microRNA’ gene network described as ‘degradome’. This study pinpoints extensive coding and noncoding RNA interactions during muscle atrophy in fish, and provides valuable resources for future mechanistic studies
    • …
    corecore