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Crosstalk among lncRNAs, 
microRNAs and mRNAs in the 
muscle ‘degradome’ of rainbow 
trout
Bam Paneru  1, Ali Ali1, Rafet Al-Tobasei2,3, Brett Kenney4 & Mohamed Salem  1,2

In fish, protein-coding and noncoding genes involved in muscle atrophy are not fully characterized. 
In this study, we characterized coding and noncoding genes involved in gonadogenesis-associated 
muscle atrophy, and investigated the potential functional interplay between these genes. Using RNA-
Seq, we compared expression pattern of mRNAs, long noncoding RNAs (lncRNAs) and microRNAs of 
atrophying skeletal muscle from gravid females and control skeletal muscle from age-matched sterile 
individuals. A total of 852 mRNAs, 1,160 lncRNAs and 28 microRNAs were differentially expressed (DE) 
between the two groups. Muscle atrophy appears to be mediated by many genes encoding ubiquitin-
proteasome system, autophagy related proteases, lysosomal proteases and transcription factors. 
Transcripts encoding atrogin-1 and mir-29 showed exceptional high expression in atrophying muscle, 
suggesting an important role in bulk muscle proteolysis. DE genes were co-localized in the genome 
with strong expression correlation, and they exhibited extensive ‘lncRNA-mRNA’, ‘lncRNA-microRNA’, 
‘mRNA-microRNA’ and ‘lncRNA-protein’ physical interactions. DE genes exhibiting potential functional 
interactions comprised the highly correlated ‘lncRNA-mRNA-microRNA’ gene network described as 
‘degradome’. This study pinpoints extensive coding and noncoding RNA interactions during muscle 
atrophy in fish, and provides valuable resources for future mechanistic studies.

Sexual maturation, starvation and several pathological conditions negatively affect muscle mass and fillet quality 
attributes1–3. Improving growth performance and fillet quality by reducing protein turnover requires an under-
standing of muscle proteolysis, in vivo. Previously, several studies have identified protein-coding genes associated 
with skeletal muscle atrophy in fish1–3. A previous microarray study identified about 200 protein-coding genes 
that were differentially expressed (DE) during sexual maturation and associated with muscle atrophy in trout1. 
This study also found upregulated expression of catheptic and collagenase proteolytic pathways during muscle 
atrophy. Additionally, activation of calpains and the 28S proteasome subunit during starvation induced skeletal 
muscle atrophy previously was observed4. Albeit, some of the previous findings are inconsistent and do not pro-
vide a comprehensive set of protein-coding genes associated with muscle atrophy. As an example, some studies 
have reported downregulation of ubiquitin-proteasome system during atrophy1, while others have reported its 
upregulation5,6. These studies either investigated a single protein-coding gene5,6 or limited sets of protein-coding 
genes1 due to lack of a holistic approach. Moreover, none of the previous studies investigated the role of microR-
NAs and long noncoding RNAs (lncRNAs) in trout muscle atrophy. A more robust approach is needed to discover 
all potential candidate genes involved in muscle atrophy.

MicroRNAs bind 3′ -UTR of mRNA that leads to downregulation of the gene by various mechanisms such as 
translation suppression7, target mRNA cleavage8 and deadenylation9. There is evidence that a single microRNA 
can regulate hundreds of genes; and, at the same time, a single gene can be regulated by hundreds of microR-
NAs10. MicroRNAs are known to regulate muscle proteolysis and muscle atrophy in different mammalian spe-
cies11. For example, mir-486 regulates disease-related muscle atrophy in mice by regulating FOXO1 transcription 
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factor12. MicroRNA, mir-182 indirectly regulates the expression of key muscle atrophy genes including atrogin-1, 
cathepsins and autophagy related genes by targeting transcription factor FOXO313. Muscle specific microRNA, 
mir-1, regulates dexamethasone mediated muscle atrophy by targeting heat shock protein 70 (HSP70)14. However, 
microRNAs that regulate muscle atrophy in salmonids have not been previously investigated.

LncRNAs are a recently discovered class of noncoding RNAs with critical gene regulatory roles15. LncRNAs 
are known to regulate genes by direct interaction with microRNAs, mRNAs and proteins. Several lncRNAs bind 
microRNAs by sequence complementarity, and this interaction leads to cellular sequestration of microRNA 
(sponge effect) and lncRNA-mRNA competition for microRNA binding16. For example, lncRNA H19 binds and 
sponges away let-7 family microRNAs from repressing its protein-coding targets17. Similarly, muscle specific 
lncRNA, linc-MD1, competes with MAML1 and MEF2C to bind microRNAs mir-135 and mir-133, respec-
tively18. LncRNA, MALAT1, modulates mir-133 mediated downregulation of serum response factor (SRF) by 
sharing mir-133 binding site19. LncRNAs can directly bind or physically interact with mRNA leading to mRNA 
decay20 and translation suppression21. Some lncRNAs hybridize with the 3′ UTR of target mRNA and facili-
tate Staufen-1 mediated mRNA decay20. On the other hand, lincRNA-p21 directly binds JUNB and CTNNB1 
mRNAs and suppresses their translation21. LncRNA’s physical interaction with proteins modulates the stability22,  
cellular availability (sequestration)23, activity24 and cellular localization24 of proteins. For example, lncRNA, 
UPAT1, binds to UHRF1 protein and interferes with its ubiquitination and subsequent degradation22. LncRNA, 
MALAT1, binds to SR splicing factors and regulates their phosphorylation and hence cellular localization24. Both 
‘lncRNA-microRNA’ and ‘lncRNA-protein-coding genes’ interactions are known to regulate development18, dis-
ease25 and cancers26,27; however, their involvement in skeletal muscle atrophy remains unknown.

To identify coding and noncoding genes involved in muscle atrophy associated with sexual maturation, we 
sequenced mRNAs, lncRNAs, and microRNAs from atrophying skeletal muscle of gravid fish and normal skeletal 
muscle of sterile fish. We subsequently performed differential gene expression of the two groups. In addition, 
we investigated functional interactions between DE lncRNAs, microRNAs and protein-coding genes in terms of 
expression correlation, genome co-localization and physical interaction to investigate gene-regulatory circuits 
during muscle atrophy. This study provides the first genome-wide lncRNA-mRNA-microRNA interaction net-
work describing fish muscle degradation, and defining these interactions will clarify how energetic demand at 
sexual maturation triggers skeletal muscle atrophy.

Result and Discussion
Characteristics of atrophying and normal skeletal muscle. Differential expression of coding and 
noncoding genes was performed in atrophying skeletal muscle from diploid (2N), gravid fish in comparison to 
non-atrophying muscle of sterile triploid (3N) fish. This same set of skeletal muscle samples was used in our labo-
ratory for several previous studies1,28,29. Compared to sterile fish, fertile females yielded less separable muscle per 
whole body weight (49.9% ± 6.7% vs 62.6% ± 2.2%, p = 0.01), muscle protein (16.9% ± 0.7% vs ~19.1% ± 0.7%, 
p = 0.01) and muscle shear force (178 ± 19 gram/gram vs 240 ± 18 gram/gram, p = 0.01). On the other hand, atro-
phied skeletal muscle from 2N females had a higher moisture content (80.3% ± 0.7% vs 77.2% ± 0.6%) and pH 
(6.61 ± 0.03 vs 6.41 ± 0.04) (Fig. 1). Atrophied muscle also had numerically lower crude fat content than normal 
muscle, but the difference was not statistically significant (p = 0.30). These textural and compositional difference 
between two groups of muscle result from extensive muscle atrophy in gravid fish triggered by the energetic 
demand of sexual maturation.

Differential expression of mRNAs, lncRNAs and microRNAs in atrophying muscle. To identify 
genes likely involved in skeletal muscle atrophy during sexual maturation, we performed deep lncRNA, mRNA 
and microRNA sequencing, and quantified DE genes between atrophying skeletal muscle of gravid fish and 
non-atrophying skeletal muscle from sterile fish. A total of 852 mRNAs, 1,160 lncRNAs and 28 microRNAs were 
DE between these two groups (FDR-p-value < 0.01, fold change: > 3 or <−3) (Fig. 2, Table 1 and Supplementary 
dataset 1). A total of 1,025 transcripts (352 mRNAs, 661 lncRNAs and 12 microRNAs) were upregulated and 
1,015 transcripts (500 mRNAs, 499 lncRNAs and 16 microRNAs) were downregulated in atrophying muscle. 
Real time PCR validation of 4 transcripts from each DE list of lncRNAs, microRNAs and mRNAs is provided in 
Supplementary dataset 2. Previously, a microarray based approach performed on the same set of muscle samples 
identified only 82 upregulated and 120 downregulated protein-coding genes1, suggesting identification, in this 
study, of a large number of additional candidate genes involved in muscle atrophy. DE protein-coding genes, 
lncRNAs and microRNAs are described in separate sections hereafter.

Protein-coding genes. Many genes that promote proteolysis were significantly upregulated in atrophying 
skeletal muscle. At least 37 genes involved in protein ubiquitination, 22 genes involved in autophagy-related pro-
teolysis, and 15 lysosomal and other proteases (cathepsin D, cathepsin B, cathepsin L and cathepsin Z) showed 
upregulation in atrophying muscle (Table 2 and Supplementary dataset 1). On the other hand, genes that neg-
atively regulate the ubiquitin-proteasome system (ubiquitin carboxyl-terminal hydrolase 10, ubiquitin-like 
domain-containing CTD phosphatase 1 and uridine-cytidine kinase 2) and autophagy (CDGSH iron-sulfur 
domain-containing protein 2) were downregulated. Amino acid and fat biosynthetic genes were downregulated 
while genes involved in amino acid catabolism and transport were highly upregulated (Supplementary data-
set 1). Similarly, genes associated with muscle sarcomere and extracellular matrix were downregulated, con-
sistent with the loss of muscle mass and shear force during atrophy. As an example, 47 collagen-related genes 
and 24 non-collagen, extracellular matrix protein genes were significantly downregulated. A previous study 
also showed similar expression pattern of genes involved in protein ubiquitination and associated with the 
autophagy-lysosome system, extracellular matrix and sarcomere structure during muscle atrophy in mammals30. 
At least 53 transcription factors (TFs) or transcription regulators were also DE; of these transcription factors 
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or regulators, 28 were upregulated and 25 were downregulated (Supplementary dataset 1). While the proteo-
lytic role for the majority of the TFs was unknown, some transcription regulators, such as zinc finger and BTB 
domain-containing protein 16 and ddb1- and cul4-associated factor 6, had known function in protein catabolism. 
On the other hand, development related TFs like myoD were downregulated. These findings suggest that muscle 
atrophy is triggered by upregulation of proteolytic and catabolic genes with concomitant downregulation of mus-
cle sarcomere, extracellular matrix, muscle development and biosynthetic genes.

The ubiquitin proteasome system appeared to be the major proteolytic system governing muscle atrophy. 
F-box only protein 32 (FBXO32) (atrogin-1), an E3 ubiquitin ligase, was the most highly upregulated genes in 
atrophying muscle suggesting that it might be the major player of muscle proteolysis during atrophy. Atrogin-1 
genes transcripts, GSONMT00016768001 and GSONMT00031929001, exhibited 378- and 152-fold upreg-
ulation, respectively (Table 2). Their expression was validated by real time PCR (Supplementary dataset 2). 
Overexpression of atrogin-1 during starvation induced skeletal muscle atrophy has been reported previously in 
rainbow trout5, Atlantic salmon6 and mammals31.

As fish progress from pre-spawning through spawning, severity of skeletal muscle atrophy increases as 
indicated by loss of muscle mass and muscle protein, and a reduction in muscle shear force,28 as a measure of 

Figure 1. Comparison of different muscle phenotypes between atrophying skeletal muscle from gravid diploid 
(2N) fish and non-atrophying muscle from sterile triploid (3N) fish. Bar graph shows mean muscle yield (% of 
whole body weight) (a), muscle shear force (gram/gram) (b), muscle protein content (%) (c), muscle crude fat 
content (%) (d), muscle moisture content (%) (e) and muscle PH (F) of five sterile and five fertile fish at the age 
of spawning. Error bar represent standard error.
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ultrastructural changes associated with muscle breakdown. To further investigate the potential contribution 
of DE genes in sexual maturation associated muscle atrophy, we looked at the trends of expression pattern of 
DE genes over 4 months during pre-spawning (July, November) and spawning (December and January) using 
RNA sequencing data from our previously described source3. Transcript abundance of ubiquitin-proteasome 
system genes and autophagy-related proteolytic genes remained constant in July and November, sharply 
increased in December, and then declined in January (Fig. 3a,b). Expression level of proteases positively 
correlated with severity of muscle atrophy in the aforementioned timeframes. Late December represents the 
time of peak sexual maturation associated muscle atrophy. Expression of genes coding for different atrogin-1 
isoforms and cathepsin D was highest in December and then declined in January (Fig. 3c,d). Cathepsin D is 
involved in sexual maturation associated muscle atrophy, and we found an increase in Cathepsin D transcript 
level. Nonetheless, previously we did not observe a significant change in catalytic activity of cathepsin D dur-
ing atrophy28. Extracellular matrix protein genes and development related genes showed opposite expression 
trends (Fig. 3e,f), consistent with the loss of muscle firmness and development during atrophy. These findings 
suggest that DE genes may serve as reliable candidate(s) critical to sexual maturation associated muscle atro-
phy in fish. However, the trends of the gene expression showed in Fig. 3 should be taken with caution because 
a single RNA-Sea library from 10 pooled fish at each time point was used and no replicates were available to 
run statistical analyses”.

Figure 2. Heat map of DE lncRNAs (left) and protein-coding genes (right) between atrophying muscle of 
gravid fish and non-atrophying muscle of sterile fish. Value of color limit represents normalized expression 
values (Z scores). Fold change in gene expression was considered significant at: FDR-p-value < 0.01, fold 
change: >3 or <−3. Darker red and lighter red colors represent higher and lower level of expression, 
respectively. Transcript annotations are provided in Supplementary dataset 2.
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Long noncoding RNAs (LncRNAs). For differential lncRNA expression, we initially performed 
genome-wide discovery of lncRNA transcripts using RNA-Seq reads sequenced from skeletal muscle of gravid 
and sterile fish. Approximately 15,000 lncRNA transcripts were identified from this assembly and merged with 
our previously published lncRNA reference32; and both sources were used as a reference for gene expression 
analysis. A total of 1,160 lncRNAs were DE between atrophying and non-atrophying skeletal muscle. Of 1,160 
DE lncRNAs, 225 and 10 lncRNAs had sequence homology with lncRNAs from Atlantic salmon and zebrafish, 
respectively (sequence identity: >80%, E value: <E-10, query cover: >50 nucleotides) (Supplementary dataset 3), 
but their functional annotation was not available in any species. Like protein-coding mRNAs, expression level of 
DE lncRNAs correlated with the severity of muscle atrophy during pre-spawning and spawning. Transcript abun-
dance of upregulated lncRNAs remained constant during pre-spawning, but drastically increased in December 
and then declined in January (Fig. 3g). On the other hand, transcript abundance of downregulated lncRNAs 
showed an opposite trend (Fig. 3h). These findings suggest that expression of these DE lncRNAs may be involved 
in sexual maturation associated muscle atrophy in rainbow trout.

MicroRNAs. A total of 28 microRNAs were DE between skeletal muscle of gravid and sterile fish. Of them, 
differential expression of mir-1, mir-133, and mir-29 during mammalian muscle atrophy has been previously 
reported11,33, but the remainder of DE microRNAs was reported for the first time (Table 1). A total of 665 unique 
mRNA genes were predicted as potential target genes of these 28 DE microRNAs; of these mRNA genes, 17 
were also DE. Some of these DE microRNAs and their predicted DE mRNA targets showed reciprocal differen-
tial expression (Supplementary dataset 4). As an example, mir-29a predicted target mRNAs encoding collagen 
alpha, ATP binding cassette subfamily f member 3, alanine tRNA synthase, scavenger receptor class b mem-
ber 1, and fk506-binding protein 2 were downregulated while mir-29a was upregulated in atrophying muscle. 
Similarly, mir-125b-1 was downregulated, and its predicted mRNA targets encoding CCAAT enhancer-binding 
protein delta and pancreatic progenitor cell differentiation and proliferation factor A were upregulated. Out 
of the DE microRNAs, sixteen were downregulated microRNAs, potentially targeting a total of 206 different 
protein-coding genes. Twenty-six of the predicted target genes were proteolytic enzymes, including genes 
involved in ubiquitin-proteasome and autophagy-lysosome mediated proteolysis (Supplementary dataset 4). 
Twelve upregulated microRNAs were predicted to target 468 different protein-coding genes. Consistent with 

MicroRNA Fold change FDR p-value correction

let-7j −1056.3 0.00069

mir-7641-1 −9.3 0.00002

mir-2187 −8.1 0.008

mir-7551 −6.8 0.00878

mir-181a-2 −5.5 0.00211

mir-1a-2 −5.2 0.006

mir-7641 −4.7 0.00172

mir-1386 −3.8 0.00603

let-7c-1 −3.8 0.00211

let-7a-3 −3.6 0.007

mir-203b −3.6 0.008

mir-1–3 −3.6 0.009

mir-148a −3.5 0.00069

mir-125b-1 −3.3 0.00256

mir-15b −3.2 0.00603

mir-133a-1 −3 0.0062

mir-132b 3 0.008

let-7d 3.3 0.00977

mir-146a 3.4 0.0061

mir-132-1 3.7 0.0072

mir-29c-3p 4.2 0.00005

mir-29c 5.1 0.00001

let-7 5.2 0.00069

mir-457b 5.7 0.00025

mir-29b-2 7 0.000002

mir-29b 7.6 0.000154

mir-29b-1 9.6 0.00001

mir-29a 11.7 0.00013

Table 1. DE microRNAs between atrophying muscle of gravid fish and normal skeletal muscle of sterile 
fish. Positive and negative value of fold change represent upregulation and downregulation respectively in 
atrophying skeletal muscle of gravid fish. Fold change was considered significant at cutoff: > 3 or <−3, FDR- 
p-value < 0.01. Several isoforms of let-7 were downregulated and several isoforms of mir-29 were upregulated.
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their upregulated expression during atrophy, 101 predicted target genes were directly involved in extracellular 
matrix, muscle structure, or development (Supplementary dataset 4). Aforementioned findings suggest that some 
genes involved in muscle atrophy may not be necessarily regulated at transcription level, and its fate is determined 
post-transcriptionally by regulated expression of microRNA.

Let-7j was the most highly downregulated microRNA (−1056 × fold) in atrophying muscle (Table 1). It was 
predicted to target 63 different protein-coding genes that account for a wide range of functions (Supplementary 
dataset 4). Consistent with its downregulation in atrophying muscle, some of its predicted targets were proteo-
lytic genes such as E3 ubiquitin-protein ligase NRDP1, ubiquitin-conjugating enzyme E2 and protein VPRBP 
(Supplementary dataset 4). Conversely, six different isoforms of mir-29 were highly upregulated in atrophying 
muscle (Table 1). Mir-29a, the most highly upregulated microRNA in atrophying muscle (11.7 × fold) was pre-
dicted to target 78 genes; the highest number of predicted target genes among DE microRNAs (Supplementary 
dataset 4). Consistent with its upregulation in atrophying muscle, predicted target genes of mir-29a included 
genes involved in muscle differentiation (IGF-BP 5), muscle sarcomere (e. g. myosin) structure, extracellular 
matrix (e. g. collagen), fat biosynthesis (e. g. long-chain-fatty-acid–ligase acsbg2 and acyl-coenzyme a thioester-
ase 11), protein synthesis (e. g. 60 s ribosomal protein l7) and development (e. g. prospero homeobox protein 1). 
These findings suggest that DE microRNAs may contribute to muscle atrophy by regulating proteolysis and other 
genes during muscle atrophy.

Tissue specific and temporal expression of DE lncRNAs and mRNAs. LncRNAs show strict spa-
tial (tissue specific) and temporal (time dependent) expression patterns34. To investigate tissue specificity of DE 
genes, we studied their expression pattern across 13 vital tissues including red and white muscle (see method 
section for classification of tissue specific genes). About 40% (462/1,160) of DE lncRNAs and approximately 
41% (348/852) of DE mRNAs were ‘specific’ to red or white muscle (Fig. 4). These specificities indicated about 
2.5-fold enrichment of muscle specific lncRNAs, and about 5.5-fold enrichment of muscle specific mRNAs in 

DE mRNA ID DE mRNA name
Fold 
change

FDR p-value 
correction

Genes involved in ubiquitin-mediated protein degradation

GSONMT00016768001 f-box only protein 32/fbxo32/atrogin-1 377.71 6.909E-16

GSONMT00031929001 f-box only protein 32/fbxo32/atrogin-1 152.44 1.629E-15

GSONMT00049913001 kelch-like protein 38-like 54.13 3.128E-06

GSONMT00006333001 kelch-like protein 33-like 37.99 6.822E-05

GSONMT00021608001 zinc finger and btb domain-containing protein 16-a-like 35.37 2.365E-08

GSONMT00076944001 tribbles homolog 2 9.59 0.0002851

GSONMT00082158001 otu domain-containing protein 1 9.40 1.475E-06

GSONMT00079892001 tumor protein p53-inducible nuclear protein 2 7.05 3.306E-07

GSONMT00000505001 thioredoxin-interacting protein 6.98 2.585E-05

TCONS_00090611 E3 ubiquitin-protein ligase HERC2-like 6.76 0.0059419

TCONS_00080006 speckle-type POZ protein 6.55 0.0006765

GSONMT00074639001 ubiquitin carboxyl-terminal hydrolase 25-like isoform x2 6.52 2.04E-06

GSONMT00036946001 ubiquitin-conjugating enzyme e2 g1 6.37 0.0007905

GSONMT00064758001 e3 ubiquitin-protein ligase znrf2 6.24 0.0043357

GSONMT00009231001 ddb1- and cul4-associated factor 6-like isoform x4 6.18 2.024E-05

Lysosomal proteases

GSONMT00080266001 cathepsin b 4.96 0.0001879

GSONMT00063049001 cathepsin L1 8.46 3.032E-07

GSONMT00049973001 cathepsin z precursor 3.49 0.0033306

TCONS_00051616 cathepsin D 3.89 4.219E-05

Autophagy related proteases

GSONMT00065684001 protein soga3-like isoform x3 63.81 2.426E-09

GSONMT00024835001 transmembrane protease serine 5-like 21.41 0.0006682

GSONMT00078909001 serine threonine-protein kinase ulk2-like isoform 12.20 2.651E-05

GSONMT00059371001 cysteine protease atg4b 12.07 4.249E-06

GSONMT00069267001 autophagy-related protein 9a-like isoform x1 11.17 0.0001673

GSONMT00012216001 gamma-aminobutyric acid receptor-associated 1 9.65 6.69E-07

GSONMT00067581001 serine threonine-protein kinase ulk2 9.31 0.0058011

GSONMT00031082001 autophagy-related protein 2 homolog a-like 7.12 0.0002591

GSONMT00037970001 autophagy-related protein 2 homolog b-like 5.97 0.0012979

GSONMT00075003001 beclin 1-associated autophagy-related key regulator 5.77 0.0022351

Table 2. Selected proteolytic genes highly upregulated in atrophying skeletal muscle of gravid female rainbow 
trout relative to non-atrophying muscle of same-aged sterile rainbow trout. Fold change was considered 
significant at cutoff: > 3 or <−3, FDR-p-value < 0.01.
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the DE gene list compared to muscle specific expression of approximately 16% (8,460/51,644) of non-DE lncR-
NAs and approximately 6% (4,583/61,412) of non-DE mRNAs in the trout genome (Supplementary dataset 5). 
Interestingly, a majority of the most highly upregulated mRNAs were muscle ‘specific’. As an example, 47 out of 
61 mRNAs, with fold change greater than 15, had muscle restricted expression patterns that included mRNA 
encoding atrogin-1. Muscle specific expression of atrogin-1 has also been previously reported in mammals31. In 
addition, some muscle specific lncRNAs, such as linc-MD1, are known to play an important role in regulation 
of muscle specific genes18. In addition to tissue specific expression, ~38% (442/1,160) of DE lncRNAs and ~40% 
(342/852) of DE mRNAs exhibited temporal (time dependent) expression patterns during pre-spawning and 
spawning (Fig. 4). These findings suggest that a significant proportion of the DE transcriptome in atrophying 
muscle is comprised of muscle specific gene expression, exhibiting a responsive expression pattern of muscle 
atrophy during sexual maturation.

Genomic co-localization of DE lncRNA and mRNA genes. Functionally related lncRNAs and 
mRNAs physically co-localize in the genome35. Out of 1,160 DE lncRNAs, 231 (~20%) unique lncRNAs were 
either overlapped or were neighbored (<50 kb) by DE mRNA genes. A total of 242 (~28%) unique DE mRNA 
genes overlapped or neighbored DE lncRNAs (Supplementary dataset 6, tab 1 and 2). These findings suggest 
that DE lncRNAs and mRNAs tend to co-localize or cluster together in the genome. However, mere physical 
proximity does not necessarily lead to functional links36,37. To test the functional significance of physical prox-
imity, we computed expression correlation between all neighboring/overlapping lncRNA-mRNA genes. Out 
of 387 neighboring/overlapping DE lncRNAs-mRNAs pairs, ~36.2% (140) had strongly correlated expression 
patterns (R > 0.85) compared to ~16.7% (168,207) DE lncRNAs-mRNAs with expression correlation (R > 0.85) 
regardless of genomic co-localization (Supplementary dataset 6, tab 3). The difference was statistically significant 
(Chi square p-value < 0.001) suggesting that co-localized lncRNA and protein-coding genes tend to be more 

Figure 3. Transcript expression values of different classes of DE genes during pre-spawning and spawning 
months in atrophying muscle of diploid gravid fish: all ubiquitinating genes combined (a), all autophagy 
related genes combined (b), atrogin-1 transcripts (c), cathepsin D isoforms (d), all development related genes 
combined (e), all collagen and extracellular matrix related genes combined (f), all upregulated lncRNAs 
combined (g) and all downregulated lncRNAs combined (h). Expression level of each gene in gravid fish 
(2N) was normalized by expression level of respective gene in sterile fish (3N). Gene lists are provided in 
Supplementary dataset 2.
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correlated in expression than genes with greater separation in the genome. The degree of expression correlation 
between lncRNAs and protein-coding genes, as a function of physical proximity, was weakly negative (R = −0.35, 
p value < 0.001) (Supplementary dataset 6, tab 4). Next, we investigated whether ‘strand orientation’ (sense or 
antisense) was correlated with ‘type of expression correlation’ (negative or positive), and found no significant cor-
relation (Chi square p-value > 0.05) (Supplementary dataset 6, tab 5). These observations suggest that DE lncRNA 
and mRNA genes tend to co-localize or cluster together in the genome, and often show correlated expression pat-
tern. Further, to investigate the potential mechanistic regulation of all neighboring/overlapping lncRNA-mRNA 
genes, we scanned promoter sequences of the lncRNA-mRNA for transcription factor (TF) binding cis regulatory 
motifs. The majority of gene pairs harbored common TF binding motifs in their promoters. Many of the TFs 
are known to be involved in muscle development (e. g. myoD, myogenin, c-Fos, c-Jun, NF-AT1, Smad3, NF-Y, 
and NFI/CTF and 24 overlapped/neighboring lnc-mRNA pairs had ER-alpha in their promoters; Supplementary 
dataset 6, tab 6). Taken together, harboring the same TFs in the promoter regions, may partly, explain the corre-
lated gene expression patterns of the co-localized DE lncRNA-mRNA pairs.

DE lncRNAs acting as microRNA sponges or microRNA precursors. Direct ‘lncRNA-microRNA’ 
binding has important functional consequences including lncRNA mediated sponging of microRNA and 
‘lncRNA-microRNA’ competition for mRNA binding16. To identify DE lncRNAs that potentially interfere with 
microRNA mediated gene regulation, we searched for high confidence microRNA binding sites in DE lncR-
NAs and mRNAs. A total of 134 trout microRNAs had binding sites in DE lncRNAs as well as DE mRNAs 
(Supplementary dataset 7). Some of these microRNAs, such as mir-133, mir-214, and mir-221, are known to 
regulate muscle atrophy or proteolysis38,39. DE lncRNAs shared microRNA binding sites with mRNAs encoding 
important proteolytic proteins such as atrogin-1, cathepsins, serine proteases, and several enzymes in the ubiqui-
tin proteasome system (Table 3 and Supplementary dataset 7). For example, atrogin-1 (GSONMT00016768001), 
the most highly upregulated gene in atrophying muscle, shared mir-22-3p binding sites with Omy200063021 and 
Omy400145202. Expression patterns of a subset of LncRNAs and mRNAs that shared microRNA binding sites 
and were strongly correlated is shown in Table 3.

In addition to acting as a microRNA sponge, some lncRNAs serve as precursors of microRNAs and 
other classes of small noncoding RNA (sRNAs)34,40. DE lncRNA, Omy400148395, harbored mir-27 loci, and 
Omy200105075 harbored aly-miR-398c-like loci. Expression of mir-27 and aly-miR-398c-like microRNAs was 
positively correlated with their potential host lncRNAs; correlation R values were 0.60 and 0.81, respectively. 
This observation suggests that these microRNAs could be generated by post-transcription processing of lncRNA 

Figure 4. Heat map showing tissue specific expression pattern of DE lncRNAs (a), tissue specific expression 
pattern of DE mRNAs (b) and temporal expression pattern of DE lncRNAs and DE mRNAs during pre-
spawning and spawning months (c). Value of color limit represents normalized expression values (Z scores). 
Darker red and lighter red colors represent higher and lower level of expression, respectively.
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transcripts. Together, these findings suggest that some DE lncRNAs may sequester or generate microRNAs 
involved in muscle atrophy.

Physical interaction between lncRNAs and protein-coding genes. Direct ‘lncRNA-mRNA’ phys-
ical interactions lead to mRNA decay20 and translation suppression21. To investigate potential existence of 
lncRNA-mRNA physical interactions, we used the IntaRNA tool that considers site accessibility and user defined 
seed requirement to predict the interaction41. At an interaction energy threshold <−100 Kcal/mole, 1,151 
DE lncRNA-DE mRNA pairs exhibited potential physical interactions (Table 4 and Supplementary dataset 8).  
Interestingly, lncRNA-mRNA pairs, showing evidence of physical interaction, were more strongly correlated 
in expression (R > 0.85) than lncRNA-mRNA pairs without the potential physical interaction (Table 4 and 
Supplementary dataset 8).

In addition to interacting with mRNAs, several lncRNAs showed evidence of physical interaction with pro-
teins of DE mRNAs. ‘LncRNA-protein’ physical interaction was computed using CatRapid Omics tool42. A total 
of 14,602 ‘DE lncRNA- protein’ pairs showed evidence of physical interaction at an interaction strength ≥96% 
and a discriminative power ≥96% (Table 4 and Supplementary dataset 8). Interestingly, ‘DE lncRNA-DE protein’ 
pairs showing evidence of direct physical interactions were more strongly correlated in expression (at transcript 
level) (R > 0.85) than ‘DE lncRNA-DE protein-coding gene’ pairs without the evidence of physical interaction 
(Chi square p-value < 0.001). Atrogin-1, cathepsin, and several enzymes of the ubiquitin-proteasome system 
were among the proteins with potential interaction with lncRNAs. ‘LncRNA-protein’ binding regulates protein’s 
stability22, availability23, activity24 and cellular localization24, suggesting that DE lncRNAs may have an important 
role in determining fate of DE protein-coding genes during muscle atrophy.

‘LncRNA-mRNA-microRNA’ interactome in atrophying muscle. LncRNAs, microRNAs, and 
mRNAs comprise interacted gene regulatory networks in the cell43, probably due to mutual regulation between 
microRNA and lncRNA16. To investigate existence of such gene interaction during muscle atrophy, we computed 
lncRNA-mRNA-microRNA interaction networks based on their expression pattern across 30 RNA-Seq datasets. 
At a correlation threshold R > 0.97 or <−0.97, about 50% (1,584) of DE transcripts were components of strongly 
correlated gene networks (Fig. 5). Interestingly, a majority of the correlated transcripts clustered in one of two 
major networks; the first comprised of downregulated transcripts and the second comprised of upregulated tran-
scripts. The first network consisted of 430 transcripts (137 lncRNAs, 219 mRNAs and 74 microRNAs). The second 

MicroRNA
DE mRNA with microRNA 
binding site (ID)

DE mRNA with microRNA 
binding site (Gene)

DE lncRNA with 
microRNA binding site

mRNA-lncRNA 
correlation (R)

omy-mir-22-3p GSONMT00016768001 f-box only protein 32 Omy400145202 0.965

omy-mir-877-3p like GSONMT00062643001 large neutral amino acids 
transporter small subunit 4-like Omy400008946 0.998

hsa-miR-5007-5p like GSONMT00070874001 insulin-induced gene 1 Omy400181081 0.991

eca-miR-9140 like GSONMT00050732001 sestrin-1-like isoform x1 Omy400011543 0.985

aly-miR4235 like GSONMT00065334001 dual specificity protein 
phosphatase 22-b-like Omy400105663 0.985

hsa-miR-372-5p like GSONMT00042478001 ring finger protein 122-like Omy400004525 0.982

cfa-miR-8844 like GSONMT00079999001 calcium-binding and coiled-coil 
domain-containing protein 1-like Omy400016065 0.981

bta-miR-7865 like GSONMT00005406001 ankyrin repeat and socs box 
protein 2-like isoform x2 Omy200187283 0.979

mml-miR-7189-3p like GSONMT00018181001 alanine aminotransferase 2-like Omy400068350 0.969

pma-miR-192-3p like GSONMT00026025001 protein slowmo homolog 2-like Omy200145928 0.968

pma-miR-192-3p like GSONMT00026025001 protein slowmo homolog 2-like Omy200145928 0.968

sbi-miR6219-5p like GSONMT00004372001 transcriptional activator protein 
pur-beta-like Omy100114534 −0.862

hsa-miR-486-5p like GSONMT00015752001 complement c1q tumor necrosis 
factor-related protein 1-like Omy500073247 −0.862

gga-miR-1606 like GSONMT00079310001 s-adenosylmethionine synthase 
isoform type-2 Omy500028713 −0.835

bta-miR-6529a like GSONMT00005466001 mitochondrial glutamate carrier 
1-like Omy500079466 −0.835

pma-miR-7a-3p like GSONMT00031137001 c20orf24 homolog Omy100068054 −0.832

bta-miR-7865 like GSONMT00063472001 ras-related protein rab-7a Omy500084871 −0.824

hsa-miR-5582-5p like GSONMT00018534001 atp-binding cassette sub-family f 
member 3 Omy400105663 −0.821

cel-miR-1822-3p like GSONMT00029001001 class e basic helix-loop-helix 
protein 40-like Omy400025747 −0.805

mmu-miR-7029-5p like GSONMT00081204001 homer protein homolog 1-like 
isoform x1 Omy500046047 −0.804

Table 3. DElncRNAs and mRNAs sharing microRNA binding sites and their expression correlation.
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network consisted of 960 transcripts (559 lncRNAs, 235 mRNAs and 166 microRNAs). The second network 
appeared to be an interacted gene “reactome” regulating muscle proteolysis because almost all upregulated pro-
teolytic genes, including enzymes of ubiquitin proteasome system, autophagy related proteolytic genes and other 
proteases such as cathepsins, were in this network. Similarly, a majority of the upregulated microRNAs includ-
ing mir-29, let-7, let-7d and mir-132 were in the network. Interestingly, atrogin-1 transcripts (the most highly 
upregulated transcripts) and mir-29a (the most highly upregulated microRNA) were in the center of this network 
suggesting a key role in the network. A crucial role of atrogin-1 in muscle atrophy has repeatedly been reported in 
fish and mammals5,6,31. We identified this network as ‘the rainbow trout muscle degradome’ because it appeared 
to be a regulatory network of muscle degrading coding and noncoding genes. The network was largely comprised 
of the genes that showed evidence of physical interaction with each other. A sub-network of the degradome 
shown in Fig. 5 consist of atrogin-1 transcripts, all DE lncRNAs that bind to atrogin-1 mRNAs, and microRNAs 
that either bind to lncRNAs and/or atrogin-1 mRNAs. The aforementioned observations suggest that coding and 
noncoding genes involved in muscle atrophy work in the form of a highly interacted gene network.

Conclusion
Sexual maturation associated skeletal muscle atrophy serves as an excellent model to study piscine muscle pro-
teolysis1,3,29. Previous efforts to investigate fish muscle proteolysis have provided limited information because 
these studies relied on individual or a limited set of protein-coding genes1,5,6. In the present study, we used deep 
lncRNA, mRNA, and microRNA sequencing approaches to investigate genes and gene regulatory networks that 
regulate muscle proteolysis in fish. Through investigation of the atrophying muscle transcriptome, we eluci-
dated that fish muscle atrophy, like mammalian muscle atrophy, is regulated mainly by the ubiquitin-proteasome 
system. In addition, many autophagy-lysosomal proteases and transcription factors appeared to participate in 
muscle proteolysis during atrophication. Atrophying muscle exhibited upregulation of proteolytic genes with 
concomitant downregulation of genes involved in muscle sarcomere, extracellular matrix, protein and fat bio-
synthesis, and development. This trend in expression pattern of genes in atrophying muscle correlated well with 
characterizations of the atrophying muscle phenotype (e. g. muscle mass, protein content and muscle shear force), 
suggesting essential roles for DE genes in muscle atrophy. The present study identified a large number of new 
candidate coding and noncoding genes in addition to the genes identified by previous microarray and proteomic 
approaches1,29 suggesting that the RNA-Seq approach has identified a large number of reliable candidate genes 
involved in muscle proteolysis/degradation.

In present study, we characterized lncRNAs potentially involved in fish muscle proteolysis, and we investi-
gated lncRNA-mRNA, lncRNA-microRNA and mRNA-microRNA interactions that potentially regulate muscle 
atrophy. A majority of DE lncRNAs and DE mRNA genes were co-localized in the genome and correlated in 
expression. DE lncRNAs appeared to physically interact extensively with DE protein-coding genes at transcript 

DE LncRNA DE mRNA
LncRNA-mRNA 
hybrid length (nts)

Interaction energy 
(Kcal/mole)

Expression 
correlation (R2)

Omy500018678 f-box protein 32/atrogin-1 149 −229.635 0.92

Omy400015745 f-box only protein 32/atrogin-1 147 −144.674 0.90

Omy400044636 cathepsin D 147 −116.681 0.93

Omy400071240 ubiquitin carboxyl-terminal hydrolase 25-like 149 −170.963 0.90

Omy500080545 ubiquitin carboxyl-terminal hydrolase 10 146 −191.917 0.85

Omy500030058 collagen alpha-1 chain like 149 −240.644 0.88

Omy400028182 myosin-binding protein slow-type-like 128 −107.449 0.83

Omy400055397 ATP-dependent 6-phosphofructokinase 149 −148.776 0.82

Omy500034918 dnaJ homolog subfamily B member 1-like 150 −206.625 0.82

Omy500043112 serine threonine-protein kinase ulk2-like 149 −166.14 0.98

DE lncRNA DE protein Interaction 
strength (%)

Discriminative 
power (%)

Expression 
correlation (R2)

Omy400034255 f-box only protein 32/atrogin-1 100 96 0.57

Omy100083321 cathepsin L1 99 97 0.97

Omy400034255 cathepsin z precursor 99 97 0.94

Omy500058188 ubiquitin carboxyl-terminal hydrolase 10 100 100 0.89

Omy100109323 e3 ubiquitin-protein ligase trim63-like 98 97 0.98

Omy400181081 collagen alpha-1 chain-like 100 99 0.91

Omy400066578 autophagy-related protein 2 homolog a-like 99 96 −0.82

Omy500048471 autophagy-related protein 9a-like 99 98 0.91

Omy400025350 cyclic amp-dependent transcription factor atf-5 99 96 0.93

Omy200129177 kelch-like protein 38-like 100 100 0.93

Omy400015874 camp-responsive element modulator isoform 100 96 0.90

Omy400044055 ccaat enhancer-binding protein delta 100 96 0.76

Table 4. Potential physical interaction of DE lncRNA-DE mRNA and their expression correlation (top). 
Potential physical interaction between DE lncRNA and proteins of DE mRNAs (bottom).
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and protein levels. Similarly, DE lncRNA also showed potential to bind and sequester cellular microRNAs impli-
cated in muscle proteolysis. LncRNA, mRNA and microRNAs that exhibited the aforementioned interactions are 
components of a highly correlated gene network in atrophying muscle. This finding indicates that the majority 
of genes involved in muscle proteolysis are expressed simultaneously by a common gene transcription program. 
Important to mention, ‘DE lncRNA-DE protein-coding’ gene pairs that either co-localized in the genome or 
showed evidence of direct physical interaction or competed for a common microRNA binding, were more fre-
quently correlated in expression than random ‘DE lncRNA-DE protein-coding’ gene pairs. Perhaps this work is 
the first genome wide study that provides links between expression correlation and potential functional interac-
tions between lncRNA and mRNA in fish. The present study has investigated potential coding and noncoding 
RNA interactions during muscle atrophy and contributes to our understanding of how energetic demand of 
sexual maturation triggers skeletal muscle atrophy in fish.

Materials and Methods
Ethics statement. Fish muscle tissues were obtained commercially from a private farm; therefore, 
Institutional Animal Care and Use Committee (IACUC) approval was not required.

Fish population and muscle sampling. We previously described the fish population in another study1. 
Briefly, mature sterile (3N: triploid) and fertile (2N: diploid) female rainbow trout (about 500 gram) were obtained 
from Flowing Springs Trout Farm (Delray, WV) during spawning season; these fish were cultured in identical 
raceways. Water from a common spring was circulated in raceways at temperature 13 ± 3 °C. Both groups of fish 
were fed ad libitum (Zeiglar Gold; Zeigler Bros., Gardeners, PA) via demand feeder until sampling. At the time of 
muscle sampling gonado-somatic index (GSI) of fertile fish was 15.8 ± 0.3 (n = 5) compared to 0.3 ± 0.2 (n = 5) 
in sterile fish confirming the gravid stage of fertile fish. White muscle tissue of 8 fish (4 fertile and 4 sterile) was 
collected from the dorsal musculature, flash frozen in liquid nitrogen and stored at −80 °C until RNA extrac-
tion. Total RNA was extracted from the muscle using TRIzol method (Invitrogen, Carlsbad, CA). For phenotype 
measurement, boneless and skinless muscle fillet was obtained in a manual filleting procedure. Muscle yield was 
measured as percentage of whole body weight. A representative portion of the muscle fillet was used for shear 
force, pH, and proximate analyses (e.g. crude protein content, crude fat content, and moisture content).

Figure 5. Gene expression network of DE lncRNAs (blue node), DE mRNAs (green node) and microRNAs 
(pink node) (R > 0.97 or <−0.97). Note that most of the DE genes are clustered in one of the two major 
networks. The larger network (degradome) comprises of upregulated genes and smaller network comprises of 
downregulated genes. In the network of upregulated transcripts, 4 atrogin-1 transcripts (red nodes) and mir-29 
isoforms (black nodes) are in the center of the network. Sub-network drawn from the larger network contains 4 
atrogin-1 transcripts, lncRNAs that bind to atrogin-1, and microRNAs that either bind to the lncRNAs and/or 
atrogin-1. Note: edges that connect nodes (genes) represent correlated expression at R cutoff 0.97 > or <−0.97; 
the shorter the length, the stronger the expression correlation.
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Library construction and sequencing. Sequencing libraries were prepared using Illumina TruSeq 
stranded total RNA with Ribo-Zero gold protocol following the manufacturer’s recommendations (Illumina 
Inc, CA, USA). One sequencing library was prepared from each fish and was provided a unique barcode. Equal 
amount of the barcoded libraries from all fish were pooled and sequenced using an Illumina HiSeq. 2000 sequenc-
ing platform in a single lane (2 × 100 reads). Similarly, for microRNA sequencing, Illumina’s TruSeq small RNA 
library preparation kit was used to prepare one barcoded library from each 8 fish and libraries were pooled and 
sequenced in a single lane of Illumina HiSeq. 2000 sequencing platform. Sequence data are available through the 
NCBI Sequence Read Archive (SRA) accession: SRP131630.

Discovery of lncRNAs. LncRNAs from sequencing reads were identified by using the pipeline we described 
previously32. Briefly, reads were mapped to rainbow trout reference genome44 and assembled using TopHat and 
Cufflinks, respectively. Transcripts shorter than 200 nucleotides were filtered out. Protein-coding transcripts 
were removed by their sequence homology with NCBI protein entries. In addition, Coding Potential Calculator 
(CPC)45 tool was used to remove any transcripts with protein-coding potential (index value < −0.5). Other 
classes of noncoding RNAs were removed based on their sequence homology with noncoding RNA transcripts 
reported in public noncoding RNA databases including miRbase, genomic tRNA database, SSU (small subu-
nit ribosomal RNA) and LSU (large subunit ribosomal RNA) databases. Putative lncRNA transcripts from the 
assembly are available at https://www.animalgenome.org/repository/pub/MTSU2017.1228/.

Identification of DE mRNA, lncRNAs and microRNAs. Read mapping and identification of DE genes 
were performed using CLC genomics workbench. For protein-coding genes, sequencing reads from every fish 
were mapped to a mRNA reference from rainbow trout genome44 and our transcriptome assembly46. The expres-
sion value of each transcript was calculated in terms of TPM (transcript per million), and DE mRNAs between 
gravid and sterile fish were identified using EDGE test (FDR-P -value < 0.01, fold change: > 3 or <−3). For lncR-
NAs, previously published rainbow trout lncRNAs32 and additional lncRNAs assembled from this sequencing 
project were used as a reference. Read mapping and identification of DE lncRNA was done as described for 
mRNAs. For microRNAs, sequencing adapters were trimmed and reads were mapped to miRBase microRNA 
reference (release 21) (mismatch ≤ 2, additional/missing upstream/downstream bases ≤ 2). The total read count 
for each microRNA was calculated, and used to identify DE microRNAs by EDGE test (FDR-p-value < 0.01, fold 
change: > 3 or <−3).

Real time PCR validation of DE transcripts. Total RNA from the same 8 fish used for sequencing was 
used to make template cDNA for qPCR analysis. Contaminating DNA in RNA sample was removed by DNAse 
treatment and cDNA was synthesized using Verso cDNA Synthesis Kit (Thermo Scientific, Hudson, NH). 
Transcript abundance of mRNA and lncRNA was quantified per manufacturer’s instruction using DyNAmo Flash 
SYBR Green Master Mix (Thermo Scientific, Hudson, NH) in Bio Rad CFX96™ System (Bio Rad, Hercules, CA). 
For microRNAs, miScript II RT kit (Qiagen, Valencia, CA, USA) was used to synthesize cDNA, and miScriptR 
SYBRR green (Qiagen, Valencia, CA, USA)47 was used to quantify microRNA in Bio Rad CFX96™ System. The 
endogenous controls used for normalization were B-actin for mRNA and lncRNAs, and U6 for microRNA. None 
of the endogenous control genes was differentially expressed in this study. Fold changes in gene expression was 
calculated by using ΔΔCt method as described previously35,48. Mann-Whitney U test was used to check if the 
transcript level between atrophying and control muscle was statistically significant (p < 0.05). All 12 transcripts 
subjected to qPCR validation had Mann Whitney U test p-value < 0.05.

Identification of tissue specific genes. The expression pattern of DE genes was investigated across 13 
vital tissues: red muscle, white muscle, spleen, liver, skin, testis, brain, intestine, stomach, kidney, head kidney, 
gill and fat44,46,49. To identify tissue specific genes, we used a statistical approach described by50. The normalized 
expression value (z score) of every gene was calculated in each tissue from TPM counts. Each gene was classified 
as ‘specific’ to a tissue if z score was greater than 1.5 in that tissue and less than 1.5 in remaining 12 tissues which is 
similar to a previous study50. We used the same approach to identify genes ‘specific’ to a particular month during 
pre-spawning and spawning3, as described in the results section.

LncRNA, mRNA and microRNA co-expression. For mRNA-ncRNA correlation analysis, 8 RNA-Seq 
samples from gravid and sterile fish and 22 RNA-Seq samples sequenced from muscle of selectively bred fish 
families developed at USDA/NCCCWA were used. Detailed description of these 22 samples, fish popula-
tion, and sampling procedure has been previously described51. TPM values (for lncRNAs and mRNAs) and 
the total count (for microRNAs) were calculated in all 30 samples (8 samples from 2 ploidy groups and 22 
samples from fish families) by mapping reads to corresponding mRNA, lncRNA, and microRNA references 
as described above. TPM and total count values were normalized by using a scaling method as previously 
described52, and normalized values were used to calculate expression correlation coefficients using Pearson 
correlations. A lncRNA-mRNA-microRNA expression network was constructed using Expression Correlation 
in cytoscape53.

Identification of cis regulatory promoter motifs. Promoter regions of all neighboring/overlapping 
lncRNA-mRNA genes were scanned for putative Transcription factor (TF) binding motifs using ALGGEN 
PROMO TF motif search tool54. Maximum dissimilarity rate was set to 5%, and RE equality/query was set 
to  <0.05.

https://www.animalgenome.org/repository/pub/MTSU2017.1228/
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Identification of microRNA-harboring lncRNAs. The rainbow trout genome reference44 was annotated 
with rainbow trout lncRNA reference sequences mentioned above. Rainbow trout pre-microRNA sequences 
(~64 nts long) from a recently published source55 were aligned to the lncRNA-annotated genome assembly. 
Pre-microRNA sequences that perfectly align (with no mismatch or gap) within annotated lncRNA loci in the 
genome were reported.

LncRNA and mRNA targets of microRNAs. In the case of mRNAs, microRNA binding sites were 
searched in 3′ UTR; whereas for lncRNAs, target sites were searched for throughout the entire sequence length. 
Three target prediction algorithms: miRanda, PITA and TargetSpy were used to find target genes using sRNA-
toolbox56. If the same target site is predicted by all 3 tools, it was considered as a potential microRNA target site. 
For all tools, minimum energy threshold was chosen as −20 Kcal/mole. Threshold scores chosen were 150 for 
miRanda and 0.99 for TargetSpy.

Prediction of lncRNA-mRNA and lncRNA-protein interaction. LncRNA-mRNA direct physical 
interaction was predicted using IntaRNA-RNA-RNA interaction tool41. All lncRNA-mRNA interactions were 
recorded at an interaction energy threshold < −100 Kcal/mole. LncRNA-protein interactions were predicted 
using CatRapid Omics tool42. Interaction strength and discriminative power (a measure of predictability of inter-
action) were set at a ≥96% to consider lncRNA-protein interaction as putative interaction.
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