8 research outputs found

    Spillover effects from invasive Acacia alters the plant-pollinator networks and seed production of native plants

    Get PDF
    Invasive flowering plants can disrupt plant–pollinator networks. This is well documented where invasives occur amongst native plants; however, the potential for ‘spillover’ effects of invasives that form stands in adjacent habitats are less well understood. Here we quantify the impact of two invasive Australian species, Acacia saligna and Acacia longifolia, on the plant–pollinator networks in fynbos habitats in South Africa. We compared networks from replicate 1 ha plots of native vegetation (n = 21) that were subjected to three treatments: (1) at least 400 m from flowering Acacia; (2) adjacent to flowering Acacia, or (3) adjacent to flowering Acacia where all Acacia flowers were manually removed. We found that native flowers adjacent to stands of flowering Acacia received significantly more insect visits, especially from beetles and Apis mellifera capensis, and that visitation was more generalized. We also recorded visitation to, and the seed set of, three native flowering species and found that two received more insect visits, but produced fewer seeds, when adjacent to flowering Acacia. Our research shows that ‘spillover’ effects of invasive Acacia can lead to significant changes in visitation and seed production of native co-flowering species in neighbouring habitats—a factor to be considered when managing invaded landscapes

    Pollinator-flower interactions in gardens during the covid 19 pandemic lockdown of 2020

    Get PDF
    During the main COVID-19 global pandemic lockdown period of 2020 an impromptu set of pollination ecologists came together via social media and personal contacts to carry out standardised surveys of the flower visits and plants in gardens. The surveys involved 67 rural, suburban and urban gardens, of various sizes, ranging from 61.18° North in Norway to 37.96° South in Australia, resulting in a data set of 25,174 rows, with each row being a unique interaction record for that date/site/plant species, and comprising almost 47,000 visits to flowers, as well as records of flowers that were not visited by pollinators, for over 1,000 species and varieties belonging to more than 460 genera and 96 plant families. The more than 650 species of flower visitors belong to 12 orders of invertebrates and four of vertebrates. In this first publication from the project, we present a brief description of the data and make it freely available for any researchers to use in the future, the only restriction being that they cite this paper in the first instance. The data generated from these global surveys will provide scientific evidence to help us understand the role that private gardens (in urban, rural and suburban areas) can play in conserving insect pollinators and identify management actions to enhance their potential

    Spillover effects from invasive Acacia alter the plant-pollinator networks and seed production of native plants

    No full text
    Invasive flowering plants can disrupt plant-pollinator networks. This is well documented where invasives occur amongst native plants, however, the potential for ‘spillover’ effects of invasives that form stands in adjacent habitats is less well understood. Here we quantify the impact of two invasive Australian species, Acacia saligna and Acacia longifolia, on the plant-pollinator networks in Fynbos habitats in South Africa. We compared networks from replicate 1ha plots of native vegetation (n=21) which were subjected to three treatments: 1) at least 400m from flowering Acacia; 2) were adjacent to flowering Acacia or 3) were adjacent to flowering Acacia where all Acacia flowers were manually removed. We found that native flowers adjacent to stands of flowering Acacia received significantly more insect visits, especially from beetles and Apis mellifera capensis, and that visitation was more generalised. We also recorded visitation to, and the seed set of, three native flowering species and found that two received more insect visits, but produced fewer seeds, when adjacent to flowering Acacia. Our research shows that ‘spillover’ effects of invasive Acacia can lead to significant changes in visitation and seed production of native co-flowering species in neighbouring habitats; a factor to be considered when managing invaded landscapes

    Pollinator-flower interactions in gardens during the COVID-19 pandemic lockdown of 2020

    Get PDF
    During the main COVID-19 global pandemic lockdown period of 2020 an impromptu set of pollination ecologists came together via social media and personal contacts to carry out standardised surveys of the flower visits and plants in gardens. The surveys involved 67 rural, suburban and urban gardens, of various sizes, ranging from 61.18° North in Norway to 37.96° South in Australia, resulting in a data set of 25,174 rows, with each row being a unique interaction record for that date/site/plant species, and comprising almost 47,000 visits to flowers, as well as records of flowers that were not visited by pollinators, for over 1,000 species and varieties belonging to more than 460 genera and 96 plant families. The more than 650 species of flower visitors belong to 12 orders of invertebrates and four of vertebrates. In this first publication from the project, we present a brief description of the data and make it freely available for any researchers to use in the future, the only restriction being that they cite this paper in the first instance. The data generated from these global surveys will provide scientific evidence to help us understand the role that private gardens (in urban, rural and suburban areas) can play in conserving insect pollinators and identify management actions to enhance their potential

    Pollinator-flower interactions in gardens during the COVID-19 pandemic lockdown of 2020

    No full text
    During the main COVID-19 pandemic lockdown period of 2020 an impromptu set of pollination ecologists came together via social media and personal contacts to carry out standardised surveys of the flower visits and plants in their gardens. The surveys involved 67 rural, suburban and urban gardens, of various sizes, ranging from 61.18o North in Norway to 37.96o South in Australia and resulted in a data set of 25,174 rows long and comprising almost 47,000 visits to flowers, as well as records of plants that were not visited by pollinators. In this first publication from the project we present a brief description of the data and make it freely available for any researchers to use in the future, the only restriction being that they cite this paper in the first instance. As well as producing a data set that we hope will be widely used in the future, the project helped enormously with the health and mental wellbeing of the participants, a by-product of ecological field work that cannot be over-estimated

    Pollinator-flower interactions in gardens during the COVID-19 pandemic lockdown of 2020

    No full text
    During the main COVID-19 pandemic lockdown period of 2020 an impromptu set of pollination ecologists came together via social media and personal contacts to carry out standardised surveys of the flower visits and plants in their gardens. The surveys involved 67 rural, suburban and urban gardens, of various sizes, ranging from 61.18o North in Norway to 37.96o South in Australia and resulted in a data set of 25,174 rows long and comprising almost 47,000 visits to flowers, as well as records of plants that were not visited by pollinators. In this first publication from the project we present a brief description of the data and make it freely available for any researchers to use in the future, the only restriction being that they cite this paper in the first instance. As well as producing a data set that we hope will be widely used in the future, the project helped enormously with the health and mental wellbeing of the participants, a by-product of ecological field work that cannot be over-estimated

    A genomic catalog of Earth’s microbiomes

    No full text
    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.</p
    corecore