327 research outputs found

    Structural change of fluid catalytic cracking catalysts study incorporate with coke characterization formed in heavy oil volatilization/decomposition

    Get PDF
    Porous structure change of catalyst and coke formation from feedstock on fluid catalytic cracking (FCC) catalyst have studied by a more comprehensive set of analyses, include 2D, 3D analyses incorporate with carbon/coke characterization teniques. Carbon/coke formed from a heavy oil volatilization/decomposition with different oil-to-FCC catalyst ratio (1:3, 1:2, 1:1, 2:1 and 3:1) to simulate the aging of FCC catalyst in a continuous oil refinery. Carbon/coke was formed for all used FCC catalyst samples that is generally increases with the increase of oil-to-FCC catalyst ratio. Coke formation has been correlated with the porosity change of the FCC catalyst, that more carbon/coke formed on the FCC catalyst due to the increment of oil-to-FCC catalyst ratio leads to the decrease of total pore volume and surface area. Zeolite is evenly distributed from the FCC catalyst particle centre to the exterior for all pristine and used FCC catalyst particles. The interior porous structure of single FCC catalyst particle is not affected by the coking. However, the exterior porous structure is completely disappear for all used FCC catalyst, that could cause by porous frame collapse and the coking clog the surface pores. The more comprehensive study of the structural change incorporate with the carbon/coke characterisation, which helps to understand the progressive degredation of FCC catalyst caused by porous structure change more in depth. Figure 1 is an example of 3 D tomogram and the radial distribution profiles of pristine FCC catalyst. Please click Additional Files below to see the full abstract

    Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation

    Get PDF
    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ?520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the bifunctional mechanism on PtSn catalyst. The positive influence of Sn was also confirmed in the PtSn nanoparticle catalyst prepared by the modification of commercial Pt/C nanoparticle and a higher activity was observed for PtSn (3:1) composition. The temperature-dependent data showed that the activation energy for butanol oxidation reaction over PtSn/C is lower than that over Pt/C

    TiO2/MoO2 nanocomposite as anode materials for high power Li-ion batteries with exceptional capacity

    Get PDF
    Nanoparticles of molybdenum(IV) oxide (MoO 2 ) and a TiO 2 /MoO 2 nanocomposite were synthesised via a continuous hydrothermal synthesis process. Both powders were analysed using XRD, XPS, TEM, and BET and evaluated as active materials in anodes for Li-ion half-cells. Cyclic voltammetry and galvanostatic charge/discharge measurements were carried out in the potential window of 0.1 to 3.0 V vs. Li/Li+. Specific capacities of ca. 350 mAh g -1 were obtained for both materials at low specific currents (0.1 A g -1 ); TiO 2 /MoO 2 composite electrodes showed superior rate behaviour & stability under cycling (compared to MoO 2 ), with stable specific capacities of ca. 265 mAh g -1 at a specific current of 0.5 A g -1 and ca. 150 mAh g -1 after 350 cycles at a specific current of 2.5 A g -1 . The improved performance of the composite material, compared to MoO 2 , was attributed to a smaller particle size, improved stability to volume changes (during cycling), and lower charge transfer resistance during cycling. Li-ion hybrid electrochemical capacitors using TiO 2 /MoO 2 composite anodes and activated carbon (AC) cathodes were evaluated and showed excellent performance with an energy density of 44 Wh kg -1 at a power density of 600 W kg -1

    X-ray micro-computed tomography of polymer electrolyte fuel cells: what is the representative elementary area?

    Get PDF
    With the growing use of X-ray computed tomography (X-ray CT) datasets for modelling of transport properties, comes the need to define the representative elementary volume (REV) if considering three dimensions or the representative elementary area (REA) if considering two dimensions. The resolution used for imaging must be suited to the features of interest in the sample and the region-of-interest must be sufficiently large to capture key information. Polymer electrolyte fuel cells have a hierarchical structure, with materials spanning multiple length scales. The work presented here examines the nature of the REA throughout a 25 cm2 membrane electrode assembly (MEA), focusing specifically on the micron length scale. Studies were carried out to investigate key structural (volume fraction, layer and penetration thickness, pore diameters) and transport (effective diffusivity) properties. Furthermore, the limiting current density of the nine regions was modelled. Stochastic heterogeneity throughout the sample results in local variations throughout. Finally, effects of resolution were probed by imaging using a range of optical magnifications (4× and 20×). The correlated and competing effects of voxel resolution and sampling size were found to cause difficulties where loss of clarity in the boundaries between phases occurs with larger imaging volumes.Jennifer Hack acknowledges a studentship from the EPSRC Centre for Doctoral Training in Advanced Characterisation of Materials (EP/LO15277/1) and the hydrogen and fuel cell research in the Electrochemical Innovation Lab (EIL) is supported through EPSRC projects (EP/M014371/1, EP/S018204/2, EP/R023581/1, EP/P009050/1, EP/L015749/1, EP/M009394/1, EP/M023508/1). Paul R. Shearing acknowledges funding from the Royal Academy of Engineering (CiET1718/59). Pablo A. García-Salaberri thanks the support from the STFC Early Career Award (ST/R006873/1) during his stay at the EIL

    Hybrid Thermo-Electrochemical In Situ Instrumentation for Lithium-Ion Energy Storage

    Get PDF
    Current “state‐of‐the‐art” monitoring and control techniques for lithium‐ion cells rely on full‐cell potential measurement and occasional surface temperature measurements. However, Li‐ion cells are complex multi‐layer devices and as such these techniques have poor resolution, limiting applicability. In this work we develop hybrid thermo‐electrochemical sensing arrays placed within the cell. The arrays are integrated into A5 pouch cells during manufacture and are used to create thermal maps in parallel with anode and cathode electrochemical data. The sensor array can be adapted to a range of cell formats and chemistries and installed into commercial or other industrially relevant cells, incorporating enhanced thermal and electrochemical diagnostic capability into a standard cell build

    Probing the Structure-Performance Relationship of Lithium-Ion Battery Cathodes Using Pore-Networks Extracted from Three-Phase Tomograms

    Get PDF
    Pore-scale simulations of Li-ion battery electrodes were conducted using both pore-network modeling and direct numerical simulation. Ternary tomographic images of NMC811 cathodes were obtained and used to create the pore-scale computational domains. A novel network extraction method was developed to manage the extraction of N-phase networks which was used to extract all three phases of NMC-811 electrode along with their interconnections Pore network results compared favorably with direct numerical simulations (DNS) in terms of effective transport properties of each phase but were obtained in significantly less time. Simulations were then conducted with combined diffusion-reaction to simulate the limiting current behavior. It was found that when considering only ion and electron transport, the electrode structure could support current densities about 300 times higher than experimentally observed values. Additional case studies were conducted to illustrate the necessity of ternary images which allow separate consideration of carbon binder domain and active material. The results showed a 24.4% decrease in current density when the carbon binder was treated as a separate phase compared to lumping the CBD and active material into a single phase. The impact of nanoporosity in the carbon binder phase was also explored and found to enhance the reaction rate by 16.8% compared to solid binder. In addition, the developed technique used 58 times larger domain volume than DNS which opens up the possibility of modelling much larger tomographic data sets, enabling representative areas of typically inhomogeneous battery electrodes to be modelled accurately, and proposes a solution to the conflicting needs of high-resolution imaging and large volumes for image-based modelling. For the first time, three-phase pore network modelling of battery electrodes has been demonstrated and evaluated, opening the path towards a new modelling framework for lithium ion batteries.The described here was financially supported by the University of Engineering and Technology Lahore, Pakistan as well as the Natural Science and Engineering Research Council (NSERC) of Canada and in the UK by the Faraday Institution (EP/R042012/1 and EP/R042063/1). Pablo A. GarcĂ­a-Salaberri thanks the support from the STFC Early Career Award (ST/R006873/1) during his stay at the Electrochemical Innovation La

    Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities

    Get PDF
    With the rapid growth in energy consumption, renewable energy is a promising solution. However, renewable energy (e.g., wind, solar, and tidal) is discontinuous and irregular by nature, which poses new challenges to the new generation of large-scale energy storage devices. Rechargeable batteries using aqueous electrolyte and multivalent ion charge are considered more suitable candidates compared to lithium-ion and lead-acid batteries, owing to their low cost, ease of manufacture, good safety, and environmentally benign characteristics. However, some substantial challenges hinder the development of aqueous rechargeable multivalent ion batteries (AMVIBs), including the narrow stable electrochemical window of water (≈1.23 V), sluggish ion diffusion kinetics, and stability issues of electrode materials. To address these challenges, a range of encouraging strategies has been developed in recent years, in the aspects of electrolyte optimization, material structure engineering and theoretical investigations. To inspire new research directions, this review focuses on the latest advances in cathode materials for aqueous batteries based on the multivalent ions (Zn2+, Mg2+, Ca2+, Al3+), their common challenges, and promising strategies for improvement. In addition, further suggestions for development directions and a comparison of the different AMVIBs are covered

    Stellar Properties of z ~ 8 Galaxies in the Reionization Lensing Cluster Survey

    Full text link
    Measurements of stellar properties of galaxies when the universe was less than one billion years old yield some of the only observational constraints of the onset of star formation. We present here the inclusion of \textit{Spitzer}/IRAC imaging in the spectral energy distribution fitting of the seven highest-redshift galaxy candidates selected from the \emph{Hubble Space Telescope} imaging of the Reionization Lensing Cluster Survey (RELICS). We find that for 6/8 \textit{HST}-selected z≳8z\gtrsim8 sources, the z≳8z\gtrsim8 solutions are still strongly preferred over z∌z\sim1-2 solutions after the inclusion of \textit{Spitzer} fluxes, and two prefer a z∌7z\sim 7 solution, which we defer to a later analysis. We find a wide range of intrinsic stellar masses (5×106M⊙5\times10^6 M_{\odot} -- 4×1094\times10^9 M⊙M_{\odot}), star formation rates (0.2-14 M⊙yr−1M_{\odot}\rm yr^{-1}), and ages (30-600 Myr) among our sample. Of particular interest is Abell1763-1434, which shows evidence of an evolved stellar population at z∌8z\sim8, implying its first generation of star formation occurred just <100< 100 Myr after the Big Bang. SPT0615-JD, a spatially resolved z∌10z\sim10 candidate, remains at its high redshift, supported by deep \textit{Spitzer}/IRAC data, and also shows some evidence for an evolved stellar population. Even with the lensed, bright apparent magnitudes of these z≳8z \gtrsim 8 candidates (H = 26.1-27.8 AB mag), only the \textit{James Webb Space Telescope} will be able further confirm the presence of evolved stellar populations early in the universe.Comment: 8 pages, 3 figures, 2 table

    Dendritic silver self-assembly in molten-carbonate membranes for efficient carbon dioxide capture

    Get PDF
    Membranes for CO2 capture should offer high permeant fluxes to keep membrane surface area small and material requirements low. Ag-supported, dual-phase, molten-carbonate membranes routinely demonstrate the highest CO2 fluxes in this class of membrane. However, using Ag as a support incurs high cost. Here, the non-equilibrium conditions of permeation were exploited to stimulate the self-assembly of a percolating, dendritic network of Ag from the molten carbonate. Multiple membrane support geometries and Ag incorporation methods were employed, demonstrating the generality of the approach, while X-ray micro-computed tomography confirmed that CO2 and O2 permeation stimulated self-assembly. We report the highest flux of Ag-supported molten-salt membranes to date (1.25 ml min−1 cm−2 at 650 °C) and ultrahigh permeability (9.4 × 10−11 mol m−1 s−1 Pa−1), surpassing the permeability requirement for economically-competitive post-combustion CO2 capture, all whilst reducing the membrane-volume-normalised demand for Ag by one order of magnitude

    Current imbalance in parallel battery strings measured using a hall‐effect sensor array

    Get PDF
    Herein, individual cell currents in parallel connected battery strings are measured using micro‐Hall‐effect sensors. Cells are routinely connected in electrical series and parallel to meet the power and energy requirements of automotive and consumer electronics applications. Cells connected in series have been extensively studied; however, cells in parallel are often assumed to be a “black box” in battery management systems. Poor pack design can result in positive feedback between current and temperature differentials along the parallel string, driving greater levels of heterogeneous behavior and uneven degradation. Herein, a noninvasive multisensor array board using Hall‐effect sensors is used to individually record the current passing through eight parallel connected cells in two different electrical configurations, showing highly heterogeneous current distribution. Characteristic “waves” of current and temperature are found to propagate along the parallel battery string and cell rebalancing is found to occur over hundreds of seconds with individual cell currents of up to 1 C rate
    • 

    corecore