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Pore-scale simulations of Li-ion battery electrodes were conducted using both pore-network modeling and direct numerical
simulation. Ternary tomographic images of NMC811 cathodes were obtained and used to create the pore-scale computational
domains. A novel network extraction method was developed to manage the extraction of N-phase networks which was used to
extract all three phases of NMC-811 electrode along with their interconnections Pore network results compared favorably with
direct numerical simulations (DNS) in terms of effective transport properties of each phase but were obtained in significantly less
time. Simulations were then conducted with combined diffusion-reaction to simulate the limiting current behavior. It was found
that when considering only ion and electron transport, the electrode structure could support current densities about 300 times higher
than experimentally observed values. Additional case studies were conducted to illustrate the necessity of ternary images which
allow separate consideration of carbon binder domain and active material. The results showed a 24.4% decrease in current density
when the carbon binder was treated as a separate phase compared to lumping the CBD and active material into a single phase. The
impact of nanoporosity in the carbon binder phase was also explored and found to enhance the reaction rate by 16.8% compared to
solid binder. In addition, the developed technique used 58 times larger domain volume than DNS which opens up the possibility of
modelling much larger tomographic data sets, enabling representative areas of typically inhomogeneous battery electrodes to be
modelled accurately, and proposes a solution to the conflicting needs of high-resolution imaging and large volumes for image-
based modelling. For the first time, three-phase pore network modelling of battery electrodes has been demonstrated and evaluated,
opening the path towards a new modelling framework for lithium ion batteries.
© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ab7bd8]
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Lithium-Ion batteries (LIBs) are the most widely used electro-
chemical energy storage devices for portable electronics and electric
vehicles (EVs). They offer a good trade-off in terms of energy
density, cycle life, low weight, low self-discharge, and high power-
density and these advantageous properties have driven the revolution
in portable electronics and, more recently, EVs. However, there is a
continual need to improve their realizable energy density, enhance
their safety, and extend their lifetime1 as well as to reduce their cost.
The positive electrodes in LIBs are composed of active material
(typically a layered metal oxide material) into which Li-ion
intercalation/deintercalation occurs, and a conductive additive
(usually carbon black) that improves electrical conductivity
throughout the electrode. These two components are combined
with a binder into a porous structure and the remaining void space
is filled with Li+ containing electrolyte, creating a 3-phase porous
electrode. Understanding the multiple, coupled transport processes
within this porous electrode is key to enhancing the transport of Li
ions and electrons, and hence to optimise design of LIBs.

To this end, mathematical modelling techniques are an essential tool
to guide the experimental development of novel electrode structures.
On one end of the spectrum lie the volume-averaged models originally
developed by Newman et al.2 The majority of these efforts focus on
developing more accurate and/or complete continuum scale models that
require less computational cost.3,4 The drawback of continuum models
is that they only include the microstructural properties of porous
electrodes through volume-averaged correlations, but it is well known

that structure plays a key role in the species transport and ultimately
device performance. At the other end of the spectrum, models based on
direct numerical simulation (DNS) techniques using 3D images of the
electrode microstructure as the computational mesh have been
developed.5–7 The relatively recent growth in application of 3D X-
ray tomographic imaging to electrochemical devices and DNS
models8,9 have greatly enhanced the understanding of transport
processes occurring inside the electrode by capturing details of the
geometrical structure; however, DNS is computationally expensive. To
incorporate all the necessary multiphysics, as well as transient behavior,
is prohibitively demanding, such that even simulating the entire
thickness of the cathode (on the order of 30–75 μm) is an unreasonable
task. Thus only DNS of small sections of electrode can be undertaken,
and these are not large enough to be representative of a real LIB. There
is thus a strong need to develop a modeling framework that can bridge
the gap between the continuum models of entire devices and DNS on
subsections of microstructure, but at low computational expense while
maintaining the crucial microstructural details. To meet this objective,
pore network models are a promising option.

Briefly, pore network modelling is a method whereby a porous
material is abstracted as a network of nodes and interconnections
that represent pores and throats. It is possible using image processing
to extract geometrical and topological details of porous media from a
tomography image, then map this onto a network of interconnected
nodes. Each node is a single unknown to be solved for, which
approximates some of the pore-scale details of electrodes but allows
simulation of large porous domains with very low computational
cost as compared to DNS, with minimal difference in output (if the
network extraction is performed correctly). Recently, pore network
modelling has been used to model various electrochemical energyzE-mail: jgostick@uwaterloo.ca
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conversion and storage devices. For example, Aghighi et al.10

developed a pore network model to simulate a polymer electrolyte
fuel cell (PEMFC) membrane electrode assembly. Aghighi et al.11

later extended this model to measure the effect of phase change in a
PEMFC cathode. El Hannach et al.12 developed a pore network
model to analyze water management and electrical performance of a
PEMFC cathode catalyst layer. Their model discussed both pore and
solid-phase networks and integrated different transport phenomena
as well as electrochemical reactions in the catalyst layer. Similarly,
pore network models have been utilized to study multiphysics
transport processes in redox flow batteries (RFB)with the recent
work of Sadeghi et al.13 that developed a multiphysics pore network
model to study the impact of electrode microstructure in redox flow
batteries (RFBs). Gayon Lombardo et al.14 used an X-ray CT image
of a RFB electrode to extract a topological equivalent pore network
and studied transient convective and diffusive transport processes.
The results showed that concentration and pressure distribution
inside electrodes greatly depends on microstructural properties.
Some volume averaged approaches has also been adopted for fuel
cell recently.15,16 Together these recent works illustrate a new trend
toward more complex multiphysics modeling using PNMs.

To date no PNMs have been applied to Li-ion battery electrodes.
Lagadec et al.17 have simulated the diffusion of Li-ions through a
porous membrane separator, but they did not investigate the
electrode structure or electrochemical reactions. Torayev et al.18

used a pore network model of Li-O2 batteries. They applied their
model to four different regions of the electrode and found that
galvanostatic discharge curves in each region varied significantly in
terms of capacity and overpotential, supporting the notion that pore
interconnectivity and macroscopic arrangement play a crucial role in
performance. In another article, Torayev et al.19 compared the ability
of continuum and pore network modelling techniques to measure the
impact of discharge performance and electrode pore size in Li-O2

batteries. They concluded that continuum models should be used
with caution as they are unable to capture important microstructural
effects. It was also noteworthy that the pore network model, which
explicitly captured pore interconnectivity, matched more closely
with experimental data. These two studies were performed on the 3D
reconstruction of super-P carbon electrodes with only pore and solid
phase under consideration. Commercial lithium-ion battery cathode
electrodes consist of three phases; electrolyte, carbon binder domain
(CBD) and active material such as lithium iron phosphate (LiFePO4,
or LFP), lithium nickel manganese cobalt oxide (LiNiMnCoO2, or
NMC) and lithium cobalt oxide (LiCoO2, or LCO). Treating the
solid carbon binder and active material phases separately cannot
only change the measured active surface area available, but also the
transport mechanism of electrons in the solid phase because of
significantly higher conductivity of the carbon binder domain (CBD)
compared to active material.20 Assuming carbon binder and active
material as a single solid phase can significantly alter the electro-
chemical performance of the model. Hence, a computationally
efficient pore network model is required that includes all the three
phases with interphase and intraphase connectivity taken into
consideration. As such, tomographic images containing all three
phases are also essential.

The main objective of the present work is to apply and validate
pore network modelling for studying the multiphysics involved in
three-phase porous lithium-ion electrodes. A network extraction
algorithm was developed to extract an arbitrary number of phases
from X-ray CT images. The developed extraction algorithm is a
continuation of previous work21 and is used here to extract a
topologically mapped network from a ternary tomogram of a
LiNi0.8Mn0.1Co0.1O2 (NMC-811) electrode. The pore network was
then used to simulate diffusion of lithium-ions in the electrolyte
phase, conduction of electrons in active material and carbon binder
phase and the reaction of lithium and electrons at the interface of
active material and electrolyte phases of the porous cathode. Finally,
two case studies are performed to highlight the importance of
simulating three-phase lithium-ion cathodes and the influence of the

CBD nanopores on maximum attainable current density and voltage
distribution. The presented pore network model provides a new
avenue to study critical transport and reaction process in lithium-ion
battery porous electrodes. To the best of our knowledge, this is the
first network extraction of a lithium-ion battery cathode. The
algorithm is written in python and is shared in the open-source
project PoreSpy22 available at https://github.com/PMEAL/porespy.

Methodology

Electrode material.—The material explored in this work is a
nickel-rich lithium-ion cathode: Li(Ni0.8Mn0.1Co0.1)O2 or NMC-
811, and was fabricated by Targray (18105 Transcanadienne,
Kirkland QC, H9J 3Z4, Canada) via printing from a slurry onto an
aluminum current collector and subsequently calendared to reduce
electrode porosity. Additional information provided by the supplier
can be found within the supplementary material (available online at
stacks.iop.org/JES/167/040528/mmedia).

X-ray computed tomography.—To prepare the sample for
imaging, a disk ca. 1.0 mm in diameter was punched from the
electrode sheet and fixed atop of a 1.0 mm diameter, 10.0 mm tall
steel dowel using quick-set epoxy. A single X-ray tomogram was
collected using a Versa micro-CT instrument (Zeiss Xradia 520
Versa, Carl Zeiss., CA, U.S.A.). Imaging was conducted with a
source accelerating voltage of 80 kV at a power of 7 W using a
tungsten target for an un-filtered, polychromatic emission with a
characteristic peak at 58 keV. The tomogram was collected using
3201 radiograph projections, each with an exposure of 16 s.
Geometric magnification coupled with a scintillator and 20× optical
magnification resulted in an image with a pixel size of 400 nm.
These radiographs were then reconstructed using standard cone-
beam, filtered-back-projection (FBP) algorithms using commercial
software (“Reconstructor Scout-and-Scan,” Carl Zeiss., CA, U.S.
A.). After reconstruction, the tomogram data was processed using a
non-local means filter to improve the image quality for segmenta-
tion. The data was then cropped, the greyscale values were
segmented according to cathode particles (NMC811), binder and
void/pore space. Further information on the quality of the image
contrast, filtering and segmentation can be found in the supplemen-
tary material. All filtering, cropping and segmentation was achieved
using Avizo Fire software (Avizo, Thermo Fisher Scientific,
Waltham, Massachusetts, U.S.).

Pore network extraction.—N-phase extraction algorithm.—The
developed network extraction algorithm is based on the watershed
segmentation technique which defines the porous regions and throat
connectivity in a visually intuitive manner.23,24 The current algo-
rithm is based on our previously published SNOW algorithm (Sub-
Network of an Over-segmented Watershed)25 and its extension
SNOW_DUAL algorithm.21 The basic SNOW algorithm consists
of two steps. Firstly, marker-based watershed segmentation is
performed to partition the image into pore regions. Before applying
this step, however, spurious markers are trimmed by applying
several filters (Fig. 1a) to avoid over-segmentation by the watershed
filter. Secondly, the discretized regions are further analyzed one at a
time to extract geometrical and topological properties of the pore
regions. The basic steps involved in the network extraction process
are shown in Fig. 1a. The SNOW algorithm was later extended to the
SNOW_DUAL algorithm to extract both solid and void phases and,
crucially, the interlinking of these phases with each other to study
transport and reaction mechanisms in catalyst packings. However,
lithium-ion cathode material consists of three phases, namely active
material, CBD and electrolyte phase. Therefore, the dual approach
was generalized to an N-phase extraction algorithm which can be
applied to any material with an arbitrary number of phases. The
developed model can be used for any kind of commercial cathode
material such as lithium iron phosphate (LiFePO4) and lithium
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cobalt oxide (LiCoO2) if 3-phase tomograms were provided—or
indeed for any tomographic data set of N-segmented phases.

The N-phase network extraction algorithm (SNOW_N) was
developed on the premise that the watershed segmentation can be
applied on each phase in an image individually, and then these
individual segmentations can be combined to form a composite
image. The overall algorithm implementation is shown in Fig. 1b.

Firstly, each phase (1 to N) is partitioned into regions using the
SNOW algorithm individually. Before recombining the segmenta-
tions, the partitioned regions of the jth phase are relabeled in order
to differentiate it from other phases. For this, if Npi is the maximum
label of ith phase region then jth phase first label will begin from Npi
+ 1. After the relabeling process, all partitioned regions are merged
together to form a composite watershed segmentation image. In the

Figure 1. (a) SNOW algorithm basic steps (b) SNOW_N extraction algorithm flow chart.

Figure 2. (a) X-μCT image of lithium nickel manganese cobalt oxide (LiNi0.8Mn0.1Co0.1O2) cathode, (b) Extracted three phase network of (a), (c) Two phase
image of porous cathode where active material and CBD correspond to one solid phase, (d) Extracted two phase network of (c).
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next step, boundary nodes are added to specify boundary conditions
during the simulation process.21 After assigning boundary nodes, the
geometrical and structural features of each region are extracted one
at a time without considering its phase association. The connectivity
of the region under consideration is determined by scanning its
neighbouring regions. This allows extracting throat properties of
connected regions, including pore-to-pore, pore-to-CBD, binder-to-
NMC, and so forth. Once all the geometrical and connectivity
information is determined, the next step is to label the interconnec-
tions between each phase with other phases. This step finds throats
that interlink any two phases with each other and stores it in the form
of separate arrays. For N phases there will be NC2 interconnection
arrays. Next, the interfacial area between any two phases is
determined using the marching cube algorithm which has been
demonstrated to produce much more accurate values for interfacial
area between regions.21 Lastly, the extracted information is stored in
the form of a Python dictionary which can be opened directly in the
open-source modelling package OpenPNM.26 The code is imple-
mented in Python and is included in the open-source package
PoreSpy.22

To illustrate the impact of treating the binder and active material
as a single phase, the developed SNOW_N algorithm was used to
extract both two-phase and three-phase networks of the Li-ion
NMC-811 cathode. The two-phase network was extracted by
assuming the carbon binder domain (CBD) and active material
phase as one solid phase. The extracted networks are shown in
Fig. 2. The green, purple and orange colour shows electrolyte,
carbon binder and active material phase, respectively. The pore and
particle size distribution for all phases is shown in Fig. 3 and
properties of both networks and original image are presented in
Table I.

Network validation by direct numerical simulation.—The
SNOW network extraction algorithm has been previously validated
for sandstone, fibrous media, and artificial foams (Voronoi
tessellations),25 and the SNOW-dual was validated for sphere
packs,21 but it is still necessary to validate 3-phase extraction on
the present Li-ion battery material image. The triple phase nature of
the material (and its requirement for a triple phase boundary to exist)
leads to specific sensitivities of the modelling.

The most direct validation is obtained by performing direct
numerical simulation (DNS) on the image using a finite volume
approach. This provides reference values for effective diffusivity of
the pore space (i.e. tortuosity) and effective conductivity of the solid
phase (including both NMC and CBD particles). These values can
then be compared to those predicted by the extracted network to
ensure that it accurately represents the porous structure. The
following sections detail the procedure used to obtain the DNS
results.

DNS model formulation.—The predictive capabilities of the pore-
network model were validated against the results computed by a
DNS model, implemented in the FVM-based code ANSYS Fluent.
The numerical domain was created using a direct mapping between
the voxel image of the electrode and a hexahedral mesh generated
with the same resolution (23,591,880 cells). Species and charge
conservation equations (i.e., Laplace equation) were solved via user-
defined scalars to determine the lithium-ion concentration and
electronic potential, respectively. Therefore, the governing equation
is given by

0 1· ( ) [ ]f G =

where G is either the mass diffusivity or electrical conductivity, and
f is the corresponding solution variable. In all cases, the Laplace
equation was discretized in ANSYS Fluent using second-order
central difference.

Several user-defined functions were used to customize the model,
including boundary conditions, transport properties and output
results. The material properties and boundary conditions were
similar to those prescribed in the pore-network model. The only
difference is that boundary conditions were also set at internal
interfaces. Consequently, in the reaction-diffusion simulation, zero
concentration was imposed at the electrolyte/active material inter-
face to model limiting-current conditions, rather than prescribing a
high reaction-rate constant at electrolyte/active material interface (as
done in the pore-network model described below). Similarly, in the
reaction-conduction simulation, current density at the electrolyte/
active material interface was determined by direct application of
Faraday’s law on the interfacial diffusive flux determined pre-
viously. A no-flux boundary condition was set at the electrolyte/
CBD interface, while a coupled (i.e., continuity) boundary condition
was prescribed at the active material/binder interface.

Pore-network formulation.—The present study focuses on the
cathode electrode of Li-ion battery that includes current collector
and lithium nickel manganese cobalt oxide (LiNi0.8Mn0.1Co0.1O2)
porous cathode operating under pseudo steady-state conditions.
Figure 4 illustrates the schematic of a cell of lithium-ion battery
domain. During discharge, lithium ions travel from the membrane
side, through the electrolyte phase (pores) and intercalate into the
active material (NMC-811) surface to form lithium nickel manga-
nese cobalt oxide according to following electrochemical reaction:

x xe Li Ni Mn Co O Li Ni Mn Co OLi

2
y x y0.8 0.1 0.1 2 0.8 0.1 0.1 2

[ ]
+ + + -

+

The physical processes occurring in the lithium-ion battery
cathode during discharge are (a) diffusion and migration of
lithium-ions in the electrolyte phase, (b) conduction of electrons in
the active material and carbon binder domain and (c) reaction (i.e.,
intercalation) of lithium-ion at the interface of electrolyte and active

Figure 3. (a) Pore size distribution of electrolyte phase in both two and three phase network, (b) Active material particle size distribution in two and three phase
network, (c) Carbon binder particle size diameter in three phase network.
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material. Several simplifying assumptions were made in this work
since the focus was on the pore-scale transport processes rather than
complete battery operation. The generation and transport of heat
were neglected, as were any side reactions such as SEI formation.
Migration of ions due to electric fields were also neglected.
Electrochemical kinetics were not included, but rather it was
assumed that the kinetics of the lithium intercalation reaction were
very fast on the surface of the active material. This assumption
simplifies the problem by decoupling the electrolyte and solid phase
potentials, reducing it to reaction-diffusion in the electrolyte phase
and reaction-conduction in active material phase. It was also
assumed that effective transport properties are not concentration
dependent as recently suggested in.27,28 We assume all transport
properties to be constant with changing concentration. The extension
of this model to transient conditions relevant to charging and
discharging will also be left for future work. The transport and
kinetic equations that were used in the developed pore network
model are given in the following sections.

Lithium-ion transport.—The lithium ion transport in the electro-
lyte phase was considered to follow a reaction-diffusion process
during the discharge cycle of the battery. The conservation of
lithium-ions around a pore i in pore network under steady-state
conditions can be represented by:

q R kc 3
j

N

i j i i
1

,

i

[ ]å = =
=

where q is the molar flow rate in mol s./ Ri is the net reaction rate of
Li-ions in pore i. k refers to the reaction constant and ci refers to the
concentration of Li-Ion in pore i. Ni is the number of neighbour
pores to pore i.

The molar flow rate qij between pore i and j can be defined using
1D Fickian diffusion:

q
D A

x
c c d c c 4i j

Li

i j
i j i j i j,

,
,( ) ( ) [ ]= - = -

+

where DLi+ is the bulk diffusion coefficient of Li+ ions in the
electrolyte phase. A is the cross-sectional area of conduit from pore i
to pore j, xi j, is the length of conduit from pore i to pore j, cj is the
concentration of Li ion in the neighbouring pore j and di j, is the
diffusive conductance between pore i and j.

Electron transport.—The charge conservation for an arbitrary
solid particle i is represented by the following governing equation:

Table I. Properties of image and extracted pore networks.

Value X-μCT image Three Phase Network Two Phase Network

Dimension [voxels] 568 × 639 × 65 568 × 639 × 65 568 × 639 × 65
Voxel Size [nm] 400 400 400
Phase [vol %]
1. Electrolyte 38.6 38.23 38.1
2. Active Material 39.6 39.53 61.9
3. Carbon Binder 21.9 22.23 —

Electrolyte Phase: Np, NT — 1648, 3619 1648, 3619
Active Material Phase: Np, NT — 1712, 2057 1726, 5316
CBD Phase: Np, NT — 1976, 4227 —

Interconnections:
1. Electrolyte-Active Material — 6888 11419
2. Electrolyte-CBD — 8878 —

3. Active Material-CBD — 7435 —

Figure 4. Schematic diagram of full cell lithium Ion battery. The applied boundary conditions are shown in red color.
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where Ii,j is the rate of charge transport from solid particle i to solid
particle j in Coulombs s−1. Ri

e is the net reaction rate of electrons at
surface of particle i. F is Faraday’s constant and z is the number of
electrons.

The rate of charge transport is proportional to the potential
difference between particle i and j as stated by Ohm’s law:

I
A

l
6i j

e

i j
i j i j i j,

,
,( ) ( ) [ ]s

j j s j j= - = -

where φi and φj are the electric potentials in active material at
particle i and j respectively. σe is the bulk electronic conductivity of
active material (NMC-811). li,j is the conduit length from particle i
and j. Ai,j is the cross-sectional area of the conduit. i j,s is the
electrical conductance between active material particle i and j.

It is assumed that no reaction takes place in the carbon binder
phase. Therefore, the governing equation for charge conversation in
this phase is as follows

I 0 7
j

N

i j
CB

1
,

i
CB

[ ]å =
=

The rate of charge transport in carbon binder phase can be
represented as 1D Ohm’s law under steady-state conditions as

I
A

k
8i j

CB

i j
i
CB

j
CB

i j
CB

i
CB

j
CB

,
,

,( ) ( ) [ ]s
j j s j j= - = -

where e
CBs is the electronic conductivity of carbon binder domain.

i
CBj and j

CBj are potential difference in carbon binder region i and j
respectively. ki j, is the conduit length in carbon binder region i and j
respectively. The overall summary of the parameters used in this
study is shown in Table II.

Boundary conditions.—The boundary conditions implemented
for mass and current transport for different cases were as follows:

1. In the electrolyte phase, a Dirichlet boundary condition of
1000 mol m−3 concentration of lithium ions was assigned in
inlet pores at the separator surface. For the simulation in which
only effective diffusivity is calculated, a Dirichlet boundary
condition of 0 mol m−3 at outlet pores (near the current
collector) and zero-diffusive flux at solid/electrolyte interface
was applied, while for reaction-diffusion simulation Neumann
boundary condition of zero diffusive flux was set in the outlet
boundary pores.

2. In the active material and carbon binder phase, 0 volt Dirichlet
boundary conditions were implemented at the current collector.
For simulations which calculate effective conductivities of the
active material and carbon binder phases, 1 volt Dirichlet
boundary conditions at outlet particles and zero-conductive
flux at solid/electrolyte interface was applied, while for reac-
tion-conduction simulation, Neumann boundary condition of
zero flux of charge was implemented at outlet particles.

Pore-scale conductance models.—To calculate the transport rate
between two pores i and j it is necessary to determine the total
conductance of the conduit between the two pores, which consists of
half of pore i, the throat, and half of pore j. In the present work, a
custom geometrical model for the conductance of each pore was
applied, based on truncated pyramids as shown in Fig. 5. Due to the
generally spherical nature of the grains in the electrode (both NMC
and CBD phases), the contacts between two pores essentially have
no throat of length greater than zero. This overlapping sphere-sphere
contact was modeled as the intersection of pairs of 4-sided truncated
pyramids. The base of the pyramids was found from the diameter of
pore, and the truncated side was set to the throat diameter. In this
model, the conductance of the throat was assumed negligible
because of zero length and the effect of the constriction between
pores was included in each pore’s contribution. The total conduc-
tance, G, in a conduit made up of pores i and j and throat k can be
calculated since the resistances act in series:

G g g

1 1 1
9

i j i k j k,
[ ]= +

- -

where gi k- and gj k- are found for each individual pore-throat section
as described below.

This results in the following expression for the electrical
conductance of pore i connected to throat k:

g
d d

L
10i k

e i k [ ]s=-

where dk is the diameter of throat, L is the distance from centroid of
pore i to centroid of throat k and di is the diameter of pore i which is
adjusted so that volume of truncated pyramid is equal to half of the
volume of pore i.

The pore space is defined by the interstitial regions between
grains of solid material. In this case, like the solid phase discussed
above, the throats are essentially constrictions defined by the
converging-diverging nature of the spheres. As such, the same
truncated pyramid model was also applied:

g
d d

L
11i k

d
Li

i k [ ]=- +

Table II. Summary of the parameters used in this study.

Parameter Value Units Description

Lcathode 2.6 × 10−5 m Cathode thickness
Across-section 5.807 × 10−8 m2 Cross-sectional area of cathode
Vcathode 1.51 × 10−12 m3 Volume of cathode
DLi+ 1.81 × 10−10 m2.s−1 Bulk diffusivity of Li ion in electrolyte phase5

CBDs 760 S.m−1 Electronic conductivity of carbon binder phase29

es 1.7 × 10−3 S.m−1 Electronic conductivity of NMC-81130

CIN 1000 kg.m−3 Concentration of lithium ion at membrane-cathode inter-
face

INj 0 Volt Voltage at cathode current collector
F 96485 C.mol−1 Faraday’s constant
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where Li+ is the diffusion coefficient of the Li ion in the electrolyte
and the geometrical properties are defined as above. All of the
lengths and diameter values were determined during the network
extraction stage described above.

Results and Discussion

PNM validation against DNS.—Effective transport proper-
ties.—The pore network model (PNM) results were compared with
direct numerical simulations (DNS) for two different conditions. In
the first case, effective transport properties were determined using
both PNM and DNS in both the electrolyte and solid phase under
steady state conditions. Dirichlet boundary conditions were used in
both inlet and outlet pores as described in boundary conditions
section. The comparison of results is shown in Table III. The
combined effective conductivities in the active material and carbon
binder phase were calculated using both approaches and the relative
error was found to be approximately 3%. The normalized effective
diffusivity of Li-ions in the electrolyte phase is 0.178 in PNM in
comparison to 0.145 in DNS simulation, meaning that the PNM
model overestimated diffusivity by 18.5% (taking the DNS result as
correct), which is not as close as the solid phase, but still quite
acceptable. These higher relative errors in this case of diffusion can
be attributed to the simplification of irregular pore-scale conduit
geometry to truncated pyramids, which evidently works better for
the solid phase because it’s generally spherical than the pore phase.
Given that the pore network modelling approach takes significantly
less computational time than DNS the relative errors reported in
Table III are acceptable for performing engineering design and
optimization calculations. The simulation results in terms of
concentration and voltage profiles are compared for both cases in
Fig 6.

Comparison of computational costs.—One of the benefits of pore
network modelling over direct numerical method is low

computational cost required for simulations. To study the computa-
tional cost of the simulations described above we have divided
computational time in two parts. (1) Meshing or extraction time and
(2) Problem solution time. In this study the approximate time taken
to build 25.5 million mesh elements domain was 1 h. On the other
hand, in pore network modelling the equivalent to meshing is
extracting the network, which required approximately 5 min to
extract 6460 nodes. However, when comparing the computational
cost of running the simulations, the average solution time in DNS
and PNM was 25 min and 1.21 s respectively. The computational
time was calculated in Inter Xeon E5–2640, 2.40 GHz, 128 GB
RAM and 20 Cores. For direct numerical simulation the solver was
parallelized across 10 cores to achieve residual below 10−8 while
PNM solution was calculated using only 1 core. This comparison
highlights the major advantage of the PNM approach over DNS,
especially while simulating large electrode domains. The compara-
tive advantage of PNMs would become even more important when
considering multiphysics such as migration of ions, and transient
behavior.

Coupled electron conduction and diffusion-reaction.—With the
pore-network extraction and geometrical representation validated by
the comparison of overall effective transport properties above, the
model was then used to predict the maximum achievable current
density. For this study, reaction-diffusion of lithium-ions in the
electrolyte phase and reaction-conduction of electrons in the active
material and carbon binder domain phases were analyzed simulta-
neously in the presence of a fast reaction of Li-ions at the NMC
phase surface, as discussed in pore network formulation section.
This assumption forces Li-Ion reaction to follow first-order kinetics
instead of Butler-Volmer kinetics as per Eq. 2. Although actual
Butler-Volmer kinetics can be implemented in the PNM model,13 the
purpose of this work was to explore the impact of structure on the
maximum performance of Li-ion cells, and to validate our PNM

Figure 5. Schematic of geometric properties of pore scale conduit in network model.

Table III. Summary of results in this study.

Variable Pore Network Model Direct Numerical Model Relative Error (%)

Deff/Dbulk 0.178 0.145 18.5
σeff 31.9 30.92 3.07
Li+ fluxvoid-NMC 1.481 × 10−2 mol m−2 s−1 1.496 × 10−2 mol m−2 s−1 0.67
ivoid-NMC 1429.8 A m−2 1411.7 A m−2 1.26
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approach to solve lithium-ion battery problems as a foundation for
future work. As can be seen in Table III, the PNM and DNS models

predict a maximum or limiting current density of 1.43 and
1.41 mA mm−2, respectively. These values are substantially higher

Figure 6. (a) and (b) Comparison of DNS and PNM model in pure diffusion simulation, (c) and (d) DNS and PNM model comparison in pure conduction
simulation.
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than experimentally observed values, which are typically in the
range of 1 × 10−3−2 × 10−2 mA mm−2.5 It was expected that the
present simulations would be higher than an operational battery
since mass transfer limited conditions were forced by applying very
high reaction rates at the electrolyte-active material boundary.
Moreover, we did not consider that Li-ions must diffuse into the
active material after intercalation occurs. It is actually quite
instructive to note that the pore structure is capable of supporting
such high current densities, and that the cumulative effect of the real
phenomena not considered in this study hinder the reaction rate
substantially. Adding more complexity to the pore network model in
future work will be valuable for understanding the contribution of
each process.

It is also observed that both the DNS and PNM simulations give
very similar results for this case study. The average Li-Ion flux at
electrolyte-active material interface differs by less than 1% between
the PNM and DNS approaches. The results of the two approaches in
terms of concentration and voltage distributions are shown in Fig. 7.
From the results in Table III it can be visually confirmed that the
PNM approach produces results well within acceptable error to be
used as an alternative modelling method for simulating Li-Ion
battery problems.

Impact of electrode structure.—Most pore-scale models of
lithium-ion batteries in the literature treat the electrode as a two-
phase system consisting of void and solid, meaning the active
material and carbon binder domain are treated as a single phase.
Given that carbon is specifically added to overcome the poor
electrical conductivity of the active material, it is expected that
such a simplification can produce erroneous results. This simplifica-
tion was necessary since previously available tomography images
only contained binary phase information. Attempts to work around
this limitation have been made by algorithmically adding CBD to the
solid phase.31,32 The available of a true 3-phase image in the present
work provides an opportunity to better understand the importance of
treating CBD as a separate phase. he developed pore network was
used to study two different cases described below.

Impact of treating carbon binder as a separate phase.—As
described in N- phase network extraction section, the SNOW_N
algorithm was used to extract both two and three-phase networks of
lithium-ion cathode. The schematic diagram of both networks is
shown in Fig. 2. These networks were used to perform comparisons
of electrodes with and without carbon binder phase as shown in
Fig. 3. Table IV shows the surface area, effective conductivities and
current density calculated in both two-phase and three-phase net-
work. As expected, the average particle size in the two-phase
network is larger than the three-phase case due to the fact that
carbon binder particles are lumped together with the active material.

As a limiting case, the maximum current density that can be
supported by the structure was calculated by simultaneously model-
ling the diffusion of Li-ions with a rapid reaction in the active
material. Limiting current may not be observed practice, but it is an
interesting modeling target since it reveals that maximum current
that can be supported by the electrode structure if electrolyte phase
transport were the only source of mass transfer resistance. The
current density was found by calculating the total rate in mol s−1 of
Li-ions entering the domain from the membrane, converting to total
current, I, using Faraday’s law, then normalizing by the cross-
sectional area of the current collector. As shown in Table IV the
current density is 24.4% higher in the two-phase network compared
to the three-phase case. This decrease when considering the CBD is
due to the reduction in reactive surface area available when CBD is
treated explicitly. It should be noted that the few studies which did
treat the CBD as a separate phase used DNS. Due to high
computational cost, these studies were limited to a domain volume
of approximately 20.2 μm × 18.13 μm × 12.4 μm 5 compared to the
electrode volume of 227.2 μm × 255.6 μm × 26 μm used in the
current study; approximately 58 times larger when the voxel sizes

are considered. The volume limitation in the present work was not
due to computational cost, but rather the field of view of the image.
This has considerable implications for battery modelling—using a
PNM approach it would be possible to model whole electrodes
imaged via 3D stitching of several CT data sets without compro-
mising on acquisition resolution.

The role of nanopores in the carbon binder phase.—It has been
reported that nanoporosity of the carbon binder phase in the porous
cathode affects overall ionic and electronic transport process.20,31,33

This nanoporosity not only alters ionic diffusion pathways and
access to the active material, but also affects the electron conducting
network. To understand the importance of nanopores in the carbon
binder phase, a parametric study was conducted where the porosity
for the carbon binder was varied. These nanopores were not
modelled explicitly as this would massively increase the computa-
tion demand of the model, negating the value of the PNM approach.
Instead, the effect of nanoporosity was included by altering the
effective conductivity and diffusivity of the CBD nodes in the
network. To scale these transport parameters as a function of
nanoporosity a Bruggeman-type relation was used,34 given by
Eqs. 12 and 13:

D 12CBD
Li

Li CBD
n( ) [ ]e=

+
+

1 13eff CBD CBD
n( ) [ ]s s e= -

where CBDe is the nanoporosity of the carbon binder phase, Li+ is
the intrinsic diffusivity of Li-ion in electrolyte phase, CBDs is the
intrinsic electronic conductivity of carbon binder phase. Li CBD,+
and effs represent effective diffusivity and electronic conductivity
after inclusion of nano pores in the carbon binder phase. n represents
the Bruggeman constant which depends on how the nanopores are
connected. Traditionally, n 1.5= for a sphere pack, but is often
higher for real random structures, so in this study n was varied
between 1.5 and 3.

Figure 8 shows the impact of varying CBDe on various aspects of
the electrode performance with n as a parameter. Figure 8a shows
how the effective electrical conductivity of the entire network
decreases as the nanopore fraction of the carbon binder increases.
As 1CBDe  the electrical conductivity for the electrode nears 0 for
all values of n, since the conducting carbon material is sacrificed.
Figure 8b shows that the effective diffusivity of the network
increases as ions are able flow through the nanoporosity. As

0CBDe  the effective diffusivity approaches the value obtained
in 3.1.1 for the pore network. The electrolyte phase tortuosity
Li

D

D
Li

eff
t = e

+
+

match well with recent study on LIB’s transport
“distortion”.35 It was observed that addition of high amounts of
nanoporosity more than doubles the ability of Li ions to transport
throughout the network. It is unlikely, however, that such high
amounts of porosity could be achieved. Moreover, as already seen,
high porosity drives the electrical conductivity of the network
toward zero value so is not a practical target anyway. For both
transport processes, the value n has only a small impact, except at
low values of .CBDe For 0.2,CBDe < the effective diffusivity is
almost unchanged while the electrical conductivity decreases no-
ticeably. Note that Eqs. 12 and 13 do not include percolation effects,
which would make this behavior at low CBDe even more pronounced.

More interesting is the interplay between increasing effective
diffusivity and decreasing conductivity as the nanoporosity is
increased. Simulations were performed with the ion diffusion-
reaction coupled to the electron conduction, such that the voltage
drop in each particle was determined that ensured a sufficient flow of
electrons were delivered to each active site to match the consump-
tion of ions there. Figure 8c shows the voltage of each NMC and
CBD particle in the network as a function of position in the thickness
direction of the electrode. These results were obtained for 0CBDe =
and n 3.= It can be seen that a small number of NMC particles
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display a high voltage. This may indicate that these particles suffer
from artificially decreased connectivity with the current collector

due to edge effects from image cropping. None of these particles are
fully disconnected (i.e. floating in space) as sometime occurs due to

Figure 7. (a) Direct Numerical simulation of Li ion diffusion and reaction, (b) Pore network modelling simulation for same case as in (a), (c) Direct numerical
simulation of conduction-reaction in active material and carbon binder phase, (d) Pore network modelling simulation of same case as (c).
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image cropping, but the topology near the edges is unavoidable
impacted and this could explain the observed voltages.

Figure 8d shows current density simulated at different CBe values.
It can be seen that current density increases from 2.65 mA.mm−2 to
3.1 mA.mm−2 by changing the nanoporosity from 0 to 80% phase.
This represents an 16.8% increase in maximum current density, but
it must be conceded that simulation is not indicative of actual
performance, since in reality the reaction rate would drop signifi-
cantly in sites with a high ohmic overpotential due to the exponential
dependence of electrochemical kinetics on voltage. The observed
behavior is due to more available reaction area and more Li-ion
pathways available from the electrolyte phase to active material due
to the presence of nanopores in CBD. The loss of electrical
conductivity is not factored into this result, and it is quite likely
that a peak in current would be observed as some intermediate value
of ,CBDe though this is outside the scope of the present work.

Conclusions

In this work, a pore network extraction algorithm was developed
to extract connectivity and geometrical information from a ternary
X-ray tomography image of a three-phase lithium nickel manganese
cobalt oxide (LiNi0.8Mn0.1Co0.1O2) porous cathode. The extracted
three-phase network not only includes geometric information of each

phase but also topological information such as the interlinking of all
phases with themselves and each other. This enables the study of
pore-scale transport through the structure while considering the
transport process in each phase.

For validation, effective transport properties including the
effective diffusivity of the pore phase and effective conductivity of
the solid phase were calculated using DNS as a reference solution,
and results compared favorably with the extracted network. Once the
model was validated, more sophisticated simulations were per-
formed by considering reaction-diffusion and reaction-conduction
process in electrolyte and solid phase of three-phase network. These
studies mimicked battery operation for the limiting case of max-
imum current, since only diffusion in the electrolyte phase and very
fast kinetics at the electrolyte-active material interface were con-
sidered. This revealed that the maximum currents that can be
supported by the electrode structure are substantially higher than
experimentally observed currents.

The developed pore network model was used in two case studies
to highlight the effect of incorporating nanopores in the carbon
binder phase, as well as the importance of using three-phase network
over two-phase network of Lithium-ion battery. The results showed
a 24.4% decrease in current density when the carbon binder was
treated as a separate phase compared to lumping the CBD and active
material into a single phase, as is often done in previous pore-scale

Table IV. Summary of results in case study 1.

Variable Units Three Phase Network Two Phase Network

SAinterface m2 1.08 × 10−7 2.84 × 10−7

σeffl S/m 31.9 8.32 × 10−4

Li+ fluxvoid-NMC mol/m2s 1.481 × 10−2 7.44 × 10−3

icurrent collector mA/mm2 2.652 3.51

Figure 8. (a) Effective electronic conductivity of solid matrix (NMC + CBD) vs nanoporosity of CBD, (b) Effective diffusivity of Li-Ion in electrolyte phase vs
nanoporosity of CBD, (c) Potential difference in solid matrix vs distance from membrane at n0 and 3,CBe = = (d) Current density of solid matrix vs CBD
nanoporosity.
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simulations on binary images. Moreover, it was observed that ionic
and electronic transport properties are affected by inclusion of
nanopores in the carbon binder phase. The current density was
observed to increase by 16.8% as the nano-porosity of CBD
increases from 0 to 80%.

As compared to direct numerical simulation, the present work
uses relatively large electrode domain to model multiple coupled
phases together in a computationally efficient way. With the
increased ability to stitch larger regions of electrode images together
and decreasing data acquisition time, the approach explored here
will become increasingly necessary in order to accurately describe
realistic Li-ion battery electrodes and the inhomogeneities that can
be present across their entire area. Also, the current study focuses
only on steady-state processes, but due to low computational cost of
pore network models, a transient approach to simulate porous media
can be adopted.
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