352 research outputs found
Influence of bottom topography on integral constraints in zonal flows with parameterized potential vorticity fluxes
An integral constraint for eddy fluxes of potential vorticity (PV), corresponding to global momentum conservation, is applied to two-layer zonal quasi-geostrophic channel flow. This constraint must be satisfied for any type of parameterization of eddy PV fluxes. Bottom topography strongly influence the integral constraint compared to a flat bottom channel. An analytical solution for the mean flow solution has been found by using asymptotic expansion in a small parameter which is the ratio of the Rossby radius to the meridional extent of the channel. Applying the integral constraint to this solution, one can find restrictions for eddy PV transfer coefficients which relate the eddy fluxes of PV to the mean flow. These restrictions strongly deviate from restrictions for the channel with flat bottom topography
Effective swimming strategies in low Reynolds number flows
The optimal strategy for a microscopic swimmer to migrate across a linear
shear flow is discussed. The two cases, in which the swimmer is located at
large distance, and in the proximity of a solid wall, are taken into account.
It is shown that migration can be achieved by means of a combination of sailing
through the flow and swimming, where the swimming strokes are induced by the
external flow without need of internal energy sources or external drives. The
structural dynamics required for the swimmer to move in the desired direction
is discussed and two simple models, based respectively on the presence of an
elastic structure, and on an orientation dependent friction, to control the
deformations induced by the external flow, are analyzed. In all cases, the
deformation sequence is a generalization of the tank-treading motion regimes
observed in vesicles in shear flows. Analytic expressions for the migration
velocity as a function of the deformation pattern and amplitude are provided.
The effects of thermal fluctuations on propulsion have been discussed and the
possibility that noise be exploited to overcome the limitations imposed on the
microswimmer by the scallop theorem have been discussed.Comment: 14 pages, 5 figure
Fluid-membrane tethers: minimal surfaces and elastic boundary layers
Thin cylindrical tethers are common lipid bilayer membrane structures,
arising in situations ranging from micromanipulation experiments on artificial
vesicles to the dynamic structure of the Golgi apparatus. We study the shape
and formation of a tether in terms of the classical soap-film problem, which is
applied to the case of a membrane disk under tension subject to a point force.
A tether forms from the elastic boundary layer near the point of application of
the force, for sufficiently large displacement. Analytic results for various
aspects of the membrane shape are given.Comment: 12 page
Action functionals for relativistic perfect fluids
Action functionals describing relativistic perfect fluids are presented. Two
of these actions apply to fluids whose equations of state are specified by
giving the fluid energy density as a function of particle number density and
entropy per particle. Other actions apply to fluids whose equations of state
are specified in terms of other choices of dependent and independent fluid
variables. Particular cases include actions for isentropic fluids and
pressureless dust. The canonical Hamiltonian forms of these actions are
derived, symmetries and conserved charges are identified, and the boundary
value and initial value problems are discussed. As in previous works on perfect
fluid actions, the action functionals considered here depend on certain
Lagrange multipliers and Lagrangian coordinate fields. Particular attention is
paid to the interpretations of these variables and to their relationships to
the physical properties of the fluid.Comment: 40 pages, plain Te
The Appearance and Disappearance of Ship Tracks on Large Spatial Scales
The 1-km advanced very high resolution radiometer observations from the morning, NOAA-12, and afternoon,
NOAA-11, satellite passes over the coast of California during June 1994 are used to determine the altitudes,
visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons are made between
the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to
deduce the conditions that are conducive to the appearance of ship tracks in satellite images. The results indicate
that the low-level clouds must be sufficiently close to the surface for ship tracks to form. Ship tracks rarely
appear in low-level clouds having altitudes greater than 1 km. The distributions of visible optical depths and
cloud droplet effective radii for ambient clouds in which ship tracks are embedded are the same as those for
clouds without ship tracks. Cloud droplet sizes and liquid water paths for low-level clouds do not constrain the
appearance of ship tracks in the imagery. The sensitivity of ship tracks to cloud altitude appears to explain why
the majority of ship tracks observed from satellites off the coast of California are found south of 358N. A small
rise in the height of low-level clouds appears to explain why numerous ship tracks appeared on one day in a
particular region but disappeared on the next, even though the altitudes of the low-level clouds were generally
less than 1 km and the cloud cover was the same for both days. In addition, ship tracks are frequent when lowlevel
clouds at altitudes below 1 km are extensive and completely cover large areas. The frequency of imagery
pixels overcast by clouds with altitudes below 1 km is greater in the morning than in the afternoon and explains
why more ship tracks are observed in the morning than in the afternoon. If the occurrence of ship tracks in
satellite imagery data depends on the coupling of the clouds to the underlying boundary layer, then cloud-top
altitude and the area of complete cloud cover by low-level clouds may be useful indices for this coupling.This work was supported in part by the Office of Naval Research and by the National Science Foundation through the Center for Clouds, Chemistry and Climate at the Scripps Institution of Oceanography, an NSF Science and Technology Center
Phase Bubbles and Spatiotemporal Chaos in Granular Patterns
We use inelastic hard sphere molecular dynamics simulations and laboratory
experiments to study patterns in vertically oscillated granular layers. The
simulations and experiments reveal that {\em phase bubbles} spontaneously
nucleate in the patterns when the container acceleration amplitude exceeds a
critical value, about , where the pattern is approximately hexagonal,
oscillating at one-fourth the driving frequency (). A phase bubble is a
localized region that oscillates with a phase opposite (differing by ) to
that of the surrounding pattern; a localized phase shift is often called an
{\em arching} in studies of two-dimensional systems. The simulations show
that the formation of phase bubbles is triggered by undulation at the bottom of
the layer on a large length scale compared to the wavelength of the pattern.
Once formed, a phase bubble shrinks as if it had a surface tension, and
disappears in tens to hundreds of cycles. We find that there is an oscillatory
momentum transfer across a kink, and this shrinking is caused by a net
collisional momentum inward across the boundary enclosing the bubble. At
increasing acceleration amplitudes, the patterns evolve into randomly moving
labyrinthian kinks (spatiotemporal chaos). We observe in the simulations that
and subharmonic patterns emerge as primary instabilities, but that
they are unstable to the undulation of the layer. Our experiments confirm the
existence of transient and patterns.Comment: 6 pages, 12 figures, submitted to Phys. Rev. E on July 1st, 2001. for
better quality figures, visit http://chaos.ph.utexas.edu/research/moo
Gas injection in a liquid saturated porous medium. Influence of pressurization effects and liquid films
We study numerically and experimentally the displacement of a liquid by a gas in a two-dimensional model porous medium. In contrast with previous pore-network studies on drainage in porous media, the gas compressibility is fully taken account. The influence of the gas injection rate on the displacement pattern, breakthrough time and the evolution of the pressure in the gas phase due in part to gas compressibility are investigated. A good agreement is found between the simulations and the experiments as regards the invasion patterns. The agreement is also good on the drainage kinetics when the dynamic liquid films are taken into account
Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades
Numerical experiments with the ECHAM5 atmospheric general circulation model have been performed in order to simulate the influence of changes in the ocean surface temperature (OST) and sea ice concentration (SIC) on climate characteristics in regions of Eurasia. The sensitivity of winter and summer climates to OST and SIC variations in 1998-2006 has been investigated and compared to those in 1968-1976. These two intervals correspond to the maximum and minimum of the Atlantic Long-Period Oscillation (ALO) index. Apart from the experiments on changes in the OST and SIC global fields, the experiments on OST anomalies only in the North Atlantic and SIC anomalies in the Arctic for the specified periods have been analyzed. It is established that temperature variations in Western Europe are explained by OST and SIC variations fairly well, whereas the warmings in Eastern Europe and Western Siberia, according to model experiments, are substantially (by a factor of 2-3) smaller than according to observational data. Winter changes in the temperature regime in continental regions are controlled mainly by atmospheric circulation anomalies. The model, on the whole, reproduces the empirical structure of changes in the winter field of surface pressure, in particular, the pressure decrease in the Caspian region; however, it substantially (approximately by three times) underestimates the range of changes. Summer temperature variations in the model are characterized by a higher statistical significance than winter ones. The analysis of the sensitivity of the climate in Western Europe to SIC variations alone in the Arctic is an important result of the experiments performed. It is established that the SIC decrease and a strong warming over the Barents Sea in the winter period leads to a cooling over vast regions of the northern part of Eurasia and increases the probability of anomalously cold January months by two times and more (for regions in Western Siberia). This effect is caused by the formation of the increased-pressure region with a center over the southern boundary of the Barents Sea during the SIC decrease and an anomalous advection of cold air masses from the northeast. This result indicates that, to estimate the ALO actions (as well as other long-scale climatic variability modes) on the climate of Eurasia, it is basically important to take into account (or correctly reproduce) Arctic sea ice changes in experiments with climatic models
- …