30 research outputs found
New Finite Rogers-Ramanujan Identities
We present two general finite extensions for each of the two Rogers-Ramanujan
identities. Of these one can be derived directly from Watson's transformation
formula by specialization or through Bailey's method, the second similar
formula can be proved either by using the first formula and the q-Gosper
algorithm, or through the so-called Bailey lattice.Comment: 19 pages. to appear in Ramanujan
Partitions with Prescribed Hook Differences
We investigate partition identities related to off-diagonal hook differences. Our results generalize previous extensions of the Rogers—Ramanujan identities. The identity of the related polynomials with constructs in statistical mechanics is discussed
Multilateral inversion of A_r, C_r and D_r basic hypergeometric series
In [Electron. J. Combin. 10 (2003), #R10], the author presented a new basic
hypergeometric matrix inverse with applications to bilateral basic
hypergeometric series. This matrix inversion result was directly extracted from
an instance of Bailey's very-well-poised 6-psi-6 summation theorem, and
involves two infinite matrices which are not lower-triangular. The present
paper features three different multivariable generalizations of the above
result. These are extracted from Gustafson's A_r and C_r extensions and of the
author's recent A_r extension of Bailey's 6-psi-6 summation formula. By
combining these new multidimensional matrix inverses with A_r and D_r
extensions of Jackson's 8-phi-7 summation theorem three balanced
very-well-poised 8-psi-8 summation theorems associated with the root systems
A_r and C_r are derived.Comment: 24 page
Logarithmic and complex constant term identities
In recent work on the representation theory of vertex algebras related to the
Virasoro minimal models M(2,p), Adamovic and Milas discovered logarithmic
analogues of (special cases of) the famous Dyson and Morris constant term
identities. In this paper we show how the identities of Adamovic and Milas
arise naturally by differentiating as-yet-conjectural complex analogues of the
constant term identities of Dyson and Morris. We also discuss the existence of
complex and logarithmic constant term identities for arbitrary root systems,
and in particular prove complex and logarithmic constant term identities for
the root system G_2.Comment: 26 page
Exact solution of the six-vertex model with domain wall boundary condition. Critical line between ferroelectric and disordered phases
This is a continuation of the papers [4] of Bleher and Fokin and [5] of
Bleher and Liechty, in which the large asymptotics is obtained for the
partition function of the six-vertex model with domain wall boundary
conditions in the disordered and ferroelectric phases, respectively. In the
present paper we obtain the large asymptotics of on the critical line
between these two phases.Comment: 22 pages, 6 figures, to appear in the Journal of Statistical Physic
A new multivariable 6-psi-6 summation formula
By multidimensional matrix inversion, combined with an A_r extension of
Jackson's 8-phi-7 summation formula by Milne, a new multivariable 8-phi-7
summation is derived. By a polynomial argument this 8-phi-7 summation is
transformed to another multivariable 8-phi-7 summation which, by taking a
suitable limit, is reduced to a new multivariable extension of the
nonterminating 6-phi-5 summation. The latter is then extended, by analytic
continuation, to a new multivariable extension of Bailey's very-well-poised
6-psi-6 summation formula.Comment: 16 page
The arctic curve of the domain-wall six-vertex model
The problem of the form of the `arctic' curve of the six-vertex model with
domain wall boundary conditions in its disordered regime is addressed. It is
well-known that in the scaling limit the model exhibits phase-separation, with
regions of order and disorder sharply separated by a smooth curve, called the
arctic curve. To find this curve, we study a multiple integral representation
for the emptiness formation probability, a correlation function devised to
detect spatial transition from order to disorder. We conjecture that the arctic
curve, for arbitrary choice of the vertex weights, can be characterized by the
condition of condensation of almost all roots of the corresponding saddle-point
equations at the same, known, value. In explicit calculations we restrict to
the disordered regime for which we have been able to compute the scaling limit
of certain generating function entering the saddle-point equations. The arctic
curve is obtained in parametric form and appears to be a non-algebraic curve in
general; it turns into an algebraic one in the so-called root-of-unity cases.
The arctic curve is also discussed in application to the limit shape of
-enumerated (with ) large alternating sign matrices. In
particular, as the limit shape tends to a nontrivial limiting curve,
given by a relatively simple equation.Comment: 39 pages, 2 figures; minor correction