30 research outputs found

    New Finite Rogers-Ramanujan Identities

    Full text link
    We present two general finite extensions for each of the two Rogers-Ramanujan identities. Of these one can be derived directly from Watson's transformation formula by specialization or through Bailey's method, the second similar formula can be proved either by using the first formula and the q-Gosper algorithm, or through the so-called Bailey lattice.Comment: 19 pages. to appear in Ramanujan

    Partitions with Prescribed Hook Differences

    Get PDF
    We investigate partition identities related to off-diagonal hook differences. Our results generalize previous extensions of the Rogers—Ramanujan identities. The identity of the related polynomials with constructs in statistical mechanics is discussed

    Multilateral inversion of A_r, C_r and D_r basic hypergeometric series

    Full text link
    In [Electron. J. Combin. 10 (2003), #R10], the author presented a new basic hypergeometric matrix inverse with applications to bilateral basic hypergeometric series. This matrix inversion result was directly extracted from an instance of Bailey's very-well-poised 6-psi-6 summation theorem, and involves two infinite matrices which are not lower-triangular. The present paper features three different multivariable generalizations of the above result. These are extracted from Gustafson's A_r and C_r extensions and of the author's recent A_r extension of Bailey's 6-psi-6 summation formula. By combining these new multidimensional matrix inverses with A_r and D_r extensions of Jackson's 8-phi-7 summation theorem three balanced very-well-poised 8-psi-8 summation theorems associated with the root systems A_r and C_r are derived.Comment: 24 page

    Logarithmic and complex constant term identities

    Full text link
    In recent work on the representation theory of vertex algebras related to the Virasoro minimal models M(2,p), Adamovic and Milas discovered logarithmic analogues of (special cases of) the famous Dyson and Morris constant term identities. In this paper we show how the identities of Adamovic and Milas arise naturally by differentiating as-yet-conjectural complex analogues of the constant term identities of Dyson and Morris. We also discuss the existence of complex and logarithmic constant term identities for arbitrary root systems, and in particular prove complex and logarithmic constant term identities for the root system G_2.Comment: 26 page

    Exact solution of the six-vertex model with domain wall boundary condition. Critical line between ferroelectric and disordered phases

    Full text link
    This is a continuation of the papers [4] of Bleher and Fokin and [5] of Bleher and Liechty, in which the large nn asymptotics is obtained for the partition function ZnZ_n of the six-vertex model with domain wall boundary conditions in the disordered and ferroelectric phases, respectively. In the present paper we obtain the large nn asymptotics of ZnZ_n on the critical line between these two phases.Comment: 22 pages, 6 figures, to appear in the Journal of Statistical Physic

    A new multivariable 6-psi-6 summation formula

    Full text link
    By multidimensional matrix inversion, combined with an A_r extension of Jackson's 8-phi-7 summation formula by Milne, a new multivariable 8-phi-7 summation is derived. By a polynomial argument this 8-phi-7 summation is transformed to another multivariable 8-phi-7 summation which, by taking a suitable limit, is reduced to a new multivariable extension of the nonterminating 6-phi-5 summation. The latter is then extended, by analytic continuation, to a new multivariable extension of Bailey's very-well-poised 6-psi-6 summation formula.Comment: 16 page

    The arctic curve of the domain-wall six-vertex model

    Full text link
    The problem of the form of the `arctic' curve of the six-vertex model with domain wall boundary conditions in its disordered regime is addressed. It is well-known that in the scaling limit the model exhibits phase-separation, with regions of order and disorder sharply separated by a smooth curve, called the arctic curve. To find this curve, we study a multiple integral representation for the emptiness formation probability, a correlation function devised to detect spatial transition from order to disorder. We conjecture that the arctic curve, for arbitrary choice of the vertex weights, can be characterized by the condition of condensation of almost all roots of the corresponding saddle-point equations at the same, known, value. In explicit calculations we restrict to the disordered regime for which we have been able to compute the scaling limit of certain generating function entering the saddle-point equations. The arctic curve is obtained in parametric form and appears to be a non-algebraic curve in general; it turns into an algebraic one in the so-called root-of-unity cases. The arctic curve is also discussed in application to the limit shape of qq-enumerated (with 0<q≤40<q\leq 4) large alternating sign matrices. In particular, as q→0q\to 0 the limit shape tends to a nontrivial limiting curve, given by a relatively simple equation.Comment: 39 pages, 2 figures; minor correction

    On the value of Gaussian sums

    No full text
    corecore