298 research outputs found
Reconsidering Self Care
In light of diminishing resources in service settings, and the subsequent high risk for worker burnout, self care remains an important vehicle for promoting worker well-being. However, traditional definitions of self care are based in formulations about the nature of the self that don’t reflect paradigmatic shifts in social work practice that place increased emphasis on the multiplicity of workers’ selves, use of self and a collaborative frame for the worker–client relationship. Thus, a reconsidered definition of self care is proposed that reflects intersubjective, relational, and recovery-oriented frames for practice and posits strategies for self care that make the self appear
Reconsidering Self Care
In light of diminishing resources in service settings, and the subsequent high risk for worker burnout, self care remains an important vehicle for promoting worker well-being. However, traditional definitions of self care are based in formulations about the nature of the self that don’t reflect paradigmatic shifts in social work practice that place increased emphasis on the multiplicity of workers’ selves, use of self and a collaborative frame for the worker–client relationship. Thus, a reconsidered definition of self care is proposed that reflects intersubjective, relational, and recovery-oriented frames for practice and posits strategies for self care that make the self appear
Detection of Noble Gas Scintillation Light with Large Area Avalanche Photodiodes (LAAPDs)
Large Area Avalanche Photodiodes (LAAPDs) were used for a series of
systematic measurements of the scintillation light in Ar, Kr, and Xe gas.
Absolute quantum efficiencies are derived. Values for Xe and Kr are consistent
with those given by the manufacturer. For the first time we show that argon
scintillation (128 nm) can be detected at a quantum efficiency above 40%.
Low-pressure argon gas is shown to emit significant amounts of non-UV
radiation. The average energy expenditure for the creation of non-UV photons in
argon gas at this pressure is measured to be below 378 eV.Comment: 16 pages, 7 figure
Casimir force between sharp-shaped conductors
Casimir forces between conductors at the sub-micron scale cannot be ignored
in the design and operation of micro-electromechanical (MEM) devices. However,
these forces depend non-trivially on geometry, and existing formulae and
approximations cannot deal with realistic micro-machinery components with sharp
edges and tips. Here, we employ a novel approach to electromagnetic scattering,
appropriate to perfect conductors with sharp edges and tips, specifically to
wedges and cones. The interaction of these objects with a metal plate (and
among themselves) is then computed systematically by a multiple-scattering
series. For the wedge, we obtain analytical expressions for the interaction
with a plate, as functions of opening angle and tilt, which should provide a
particularly useful tool for the design of MEMs. Our result for the Casimir
interactions between conducting cones and plates applies directly to the force
on the tip of a scanning tunneling probe; the unexpectedly large temperature
dependence of the force in these configurations should attract immediate
experimental interest
Measurement of the Casimir force between parallel metallic surfaces
We report on the measurement of the Casimir force between conducting surfaces
in a parallel configuration. The force is exerted between a silicon cantilever
coated with chromium and a similar rigid surface and is detected looking at the
shifts induced in the cantilever frequency when the latter is approached. The
scaling of the force with the distance between the surfaces was tested in the
0.5 - 3.0 m range, and the related force coefficient was determined at the
15% precision level.Comment: 4 Figure
Casimir interaction between two concentric cylinders: exact versus semiclassical results
The Casimir interaction between two perfectly conducting, infinite,
concentric cylinders is computed using a semiclassical approximation that takes
into account families of classical periodic orbits that reflect off both
cylinders. It is then compared with the exact result obtained by the
mode-by-mode summation technique. We analyze the validity of the semiclassical
approximation and show that it improves the results obtained through the
proximity theorem.Comment: 28 pages, 5 figures include
Casimir-like tunneling-induced electronic forces
We study the quantum forces that act between two nearby conductors due to
electronic tunneling. We derive an expression for these forces by calculating
the flux of momentum arising from the overlap of evanescent electronic fields.
Our result is written in terms of the electronic reflection amplitudes of the
conductors and it has the same structure as Lifshitz's formula for the
electromagnetically mediated Casimir forces. We evaluate the tunneling force
between two semiinfinite conductors and between two thin films separated by an
insulating gap. We discuss some applications of our results.Comment: 8 pages, 3 figs, submitted to Proc. of QFEXT'05, to be published in
J. Phys.
Strong Casimir force reduction through metallic surface nanostructuring
The Casimir force between bodies in vacuum can be understood as arising from
their interaction with an infinite number of fluctuating electromagnetic
quantum vacuum modes, resulting in a complex dependence on the shape and
material of the interacting objects. Becoming dominant at small separations,
the force plays a significant role in nanomechanics and object manipulation at
the nanoscale, leading to a considerable interest in identifying structures
where the Casimir interaction behaves significantly different from the
well-known attractive force between parallel plates. Here we experimentally
demonstrate that by nanostructuring one of the interacting metal surfaces at
scales below the plasma wavelength, an unexpected regime in the Casimir force
can be observed. Replacing a flat surface with a deep metallic lamellar grating
with sub-100 nm features strongly suppresses the Casimir force and for large
inter-surfaces separations reduces it beyond what would be expected by any
existing theoretical prediction.Comment: 11 pages, 8 figure
The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics
The analysis of this article is entirely within classical physics. Any
attempt to describe nature within classical physics requires the presence of
Lorentz-invariant classical electromagnetic zero-point radiation so as to
account for the Casimir forces between parallel conducting plates at low
temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's
equations into solutions. In an inertial frame, conformal symmetry leaves
zero-point radiation invariant and does not connect it to non-zero-temperature;
time-dilating conformal transformations carry the Lorentz-invariant zero-point
radiation spectrum into zero-point radiation and carry the thermal radiation
spectrum at non-zero temperature into thermal radiation at a different
non-zero-temperature. However, in a non-inertial frame, a time-dilating
conformal transformation carries classical zero-point radiation into thermal
radiation at a finite non-zero-temperature. By taking the no-acceleration
limit, one can obtain the Planck radiation spectrum for blackbody radiation in
an inertial frame from the thermal radiation spectrum in an accelerating frame.
Here this connection between zero-point radiation and thermal radiation is
illustrated for a scalar radiation field in a Rindler frame undergoing
relativistic uniform proper acceleration through flat spacetime in two
spacetime dimensions. The analysis indicates that the Planck radiation spectrum
for thermal radiation follows from zero-point radiation and the structure of
relativistic spacetime in classical physics.Comment: 21 page
Quantum electromagnetic field in a three dimensional oscillating cavity
We compute the photon creation inside a perfectly conducting, three
dimensional oscillating cavity, taking the polarization of the electromagnetic
field into account. As the boundary conditions for this field are both of
Dirichlet and (generalized) Neumann type, we analyze as a preliminary step the
dynamical Casimir effect for a scalar field satisfying generalized Neumann
boundary conditions. We show that particle production is enhanced with respect
to the case of Dirichlet boundary conditions. Then we consider the transverse
electric and transverse magnetic polarizations of the electromagnetic field.
For resonant frequencies, the total number of photons grows exponentially in
time for both polarizations, the rate being greater for transverse magnetic
modes.Comment: 11 pages, 1 figur
- …