3,091 research outputs found

    SPITZER IRS spectra of Virgo early type galaxies: detection of stellar silicate emission

    Full text link
    We present high signal to noise ratio Spitzer Infrared Spectrograph observations of 17 Virgo early-type galaxies. The galaxies were selected from those that define the colour-magnitude relation of the cluster, with the aim of detecting the silicate emission of their dusty, mass-losing evolved stars. To flux calibrate these extended sources we have devised a new procedure that allows us to obtain the intrinsic spectral energy distribution and to disentangle resolved and unresolved emission within the same object. We have found that thirteen objects of the sample (76%) are passively evolving galaxies with a pronounced broad silicate feature which is spatially extended and likely of stellar origin, in agreement with model predictions. The other 4 objects (24%) are characterized by different levels of activity. In NGC 4486 (M 87) the line emission and the broad silicate emission are evidently unresolved and, given also the typical shape of the continuum, they likely originate in the nuclear torus. NGC 4636 shows emission lines superimposed on extended (i.e. stellar) silicate emission, thus pushing the percentage of galaxies with silicate emission to 82%. Finally, NGC 4550 and NGC 4435 are characterized by polycyclic aromatic hydrocarbon (PAH) and line emission, arising from a central unresolved region. A more detailed analysis of our sample, with updated models, will be presented in a forthcoming paper.Comment: 6 pages; ApJ Letters, accepte

    Star Formation History and Extinction in the central kpc of M82-like Starbursts

    Get PDF
    We report on the star formation histories and extinction in the central kpc region of a sample of starburst galaxies that have similar far infrared (FIR), 10 micron and K-band luminosities as those of the archetype starburst M82. Our study is based on new optical spectra and previously published K-band photometric data, both sampling the same area around the nucleus. Model starburst spectra were synthesized as a combination of stellar populations of distinct ages formed over the Hubble time, and were fitted to the observed optical spectra and K-band flux. The model is able to reproduce simultaneously the equivalent widths of emission and absorption lines, the continuum fluxes between 3500-7000 Ang, the K-band and the FIR flux. We require a minimum of 3 populations -- (1) a young population of age < 8 Myr, with its corresponding nebular emission, (2) an intermediate-age population (age < 500 Myr), and (3) an old population that forms part of the underlying disk or/and bulge population. The contribution of the old population to the K-band luminosity depends on the birthrate parameter and remains above 60% in the majority of the sample galaxies. Even in the blue band, the intermediate age and old populations contribute more than 40% of the total flux in all the cases. A relatively high contribution from the old stars to the K-band nuclear flux is also apparent from the strength of the 4000 Ang break and the CaII K line. The extinction of the old population is found to be around half of that of the young population. The contribution to the continuum from the relatively old stars has the effect of diluting the emission equivalent widths below the values expected for young bursts. The mean dilution factors are found to be 5 and 3 for the Halpha and Hbeta lines respectively.Comment: 20 pages, uses emulateapj.cls. Scheduled to appear in ApJ Jan 1, 200

    The role of the synchrotron component in the mid infrared spectrum of M 87

    Full text link
    We study in detail the mid-infrared Spitzer-IRS spectrum of M 87 in the range 5 to 20 micron. Thanks to the high sensitivity of our Spitzer-IRS spectra we can disentangle the stellar and nuclear components of this active galaxy. To this end we have properly subtracted from the M 87 spectrum, the contribution of the underlying stellar continuum, derived from passive Virgo galaxies in our sample. The residual is a clear power-law, without any additional thermal component, with a zero point consistent with that obtained by high spatial resolution, ground based observations. The residual is independent of the adopted passive template. This indicates that the 10 micron silicate emission shown in spectra of M 87 can be entirely accounted for by the underlying old stellar population, leaving little room for a possible torus contribution. The MIR power-law has a slope alpha ~ 0.77-0.82 (Sννα_\nu\propto\nu^{-\alpha}), consistent with optically thin synchrotron emission.Comment: 5 pages, 4 figures, accepted for publication in ApJ main journa

    Spectro-photometric Evolution of Elliptical Galaxies. II. Models with infall

    Get PDF
    In this paper we present new chemo-spectro-photometric models of elliptical galaxies in which infall of primordial gas is allowed to occur. They aim to simulate the collapse of a galaxy made of two components, i.e. luminous material and dark matter. The mass of the dark component is assumed to be constant in time, whereas that of the luminous material is supposed to accrete at a suitable rate. They also include the effect of galactic winds powered by supernova explosions and stellar winds from massive, early-type stars. The models are constrained to match a number of properties of elliptical galaxies, i.e. the slope and mean colours of the colour-magnitude relation (CMR), V versus (V--K), the UV excess as measured by the colour (1550--V) together with the overall shape of the integrated spectral energy distribution (ISED) in the ultraviolet, the relation between the Mg2 index and (1550--V), the mass to blue luminosity ratio M/Lb as a function of the B luminosity, and finally the broad-band colours (U--B), (B--V), (V--I), (V--K), etc.Comment: pages 22, 20 postscript figures, 2 external table (tab2_infall using supertabular.sty and tab5_infall using supertabular1.sty

    Mid-infrared colour gradients and the colour-magnitude relation in Virgo early-type galaxies

    Get PDF
    We make use of Spitzer imaging between 4 and 16 micron and near-infrared data at 2.2 micron to investigate the nature and distribution of the mid-infrared emission in a sample of early-type galaxies in the Virgo cluster. These data allow us to conclude, with some confidence, that the emission at 16 micron in passive ETGs is stellar in origin, consistent with previous work concluding that the excess mid-infrared emission comes from the dusty envelopes around evolved AGB stars. There is little evidence for the mid-infrared emission of an unresolved central component, as might arise in the presence of a dusty torus associated with a low-luminosity AGN. We nonetheless find that the 16 micron emission is more centrally peaked than the near-infrared emission, implying a radial stellar population gradient. By comparing with independent evidence from studies at optical wavelengths, we conclude that a metallicity that falls with increasing radius is the principal driver of the observed gradient. We also plot the mid-infrared colour-magnitude diagram and combine with similar work on the Coma cluster to define the colour-magnitude relation for absolute K-band magnitudes from -26 to -19. Because a correlation between mass and age would produce a relation with a gradient in the opposite sense to that observed, we conclude that the relation reflects the fact that passive ETGs of lower mass also have a lower average metallicity. The colour-magnitude relation is thus driven by metallicity effects. In contrast to what is found in Coma, we do not find any objects with anomalously bright 16 micron emission relative to the colour-magnitude relation. Although there is little overlap in the mass ranges probed in the two clusters, this may suggest that observable ``rejuvenation'' episodes are limited to intermediate mass objects.Comment: 8 pages, 4 figure

    Star Formation History of Early-Type Galaxies in Low Density Environments V. Blue line-strength indices for the nuclear region

    Get PDF
    We analyze the star formation properties of a sample of 21 shell galaxies and 30 early-type galaxies members of interacting pairs, located in low density environments (Longhetti et al 1998a, 1998b). The study is based on new models developed to interpret the information coming from `blue' Hδ\delta/FeI, H+K(CaII) and \D4000 line-strength indices proposed by Rose (1984; 1985) and Hamilton (1985). We find that the last star forming event that occurred in the nuclear region of shell galaxies is statistically old (from 0.1 up to several Gyr) with respect to the corresponding one in the sub-sample of pair galaxies (<0.1 Gyr or even ongoing star formation). If the stellar activity is somehow related to the formation of shells, as predicted by several dynamical models of galaxy interaction, shells have to be considered long lasting structures. Since pair members show evidence of very recent star formation, we suggest that either large reservoirs of gas have to be present to maintain active star formation, if these galaxies are on periodic orbits, or most of the pair members in the present sample are experiencing unbound encounters.Comment: 12 pages, including 7 figures - Accepted for publication in A&

    Effects of dark matter annihilation on the first stars

    Full text link
    We study the evolution of the first stars in the universe (Population III) from the early pre-Main Sequence until the end of helium burning in the presence of WIMP dark matter annihilation inside the stellar structure. The two different mechanisms that can provide this energy source are the contemporary contraction of baryons and dark matter, and the capture of WIMPs by scattering off the gas with subsequent accumulation inside the star. We find that the first mechanism can generate an equilibrium phase, previously known as a "dark star", which is transient and present in the very early stages of pre-MS evolution. The mechanism of scattering and capture acts later, and can support the star virtually forever, depending on environmental characteristic of the dark matter halo and on the specific WIMP model.Comment: Proceedings of the IAU Symposium 255, "Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies"; L.K. Hunt, S. Madden and R. Schneider ed

    Optical properties of the NGC 5328 group of galaxies

    Full text link
    We present the results of a photometric and spectroscopic study of seven members of the NGC 5328 group of galaxies, a chain of galaxies spanning over 200 kpc (H_0 = 70 km/s/Mpc). We analyze the galaxy structure and study the emission line properties of the group members looking for signatures of star formation and AGN activity. We finally attempt to infer, from the modeling of line-strength indices, the stellar population ages of the early-type members. We investigate also the presence of a dwarf galaxy population associated with the bright members. The group is composed of a large fraction of early-type galaxies including NGC 5328 and NGC 5330, two bona fide ellipticals at the center of the group. In both galaxies no recent star formation episodes are detected by the H_beta vs. MgFe indices of these galaxies. 2MASX J13524838-2829584 has extremely boxy isophotes which are believed to be connected to a merging event: line strength indices suggest that this object probably had a recent star formation episode. A warped disc component emerges from the model subtracted image of 2MASX J13530016-2827061 which is interpreted as a signature of an ongoing interaction with the rest of the group. Ongoing star formation and nuclear activity is present in the projected outskirts of the group. The two early-type galaxies 2MASX J13523852-2830444 and 2MASX J13525393-2831421 show spectral signatures of star formation, while a Seyfert 2 type nuclear activity is detected in MCG -5-33-29.Comment: 18 pages, 12 figures, accepted for publication in MNRA

    SBV Regularity for Genuinely Nonlinear, Strictly Hyperbolic Systems of Conservation Laws in one space dimension

    Get PDF
    We prove that if tu(t)BV(R)t \mapsto u(t) \in \mathrm {BV}(\R) is the entropy solution to a N×NN \times N strictly hyperbolic system of conservation laws with genuinely nonlinear characteristic fields ut+f(u)x=0, u_t + f(u)_x = 0, then up to a countable set of times {tn}nN\{t_n\}_{n \in \mathbb N} the function u(t)u(t) is in SBV\mathrm {SBV}, i.e. its distributional derivative uxu_x is a measure with no Cantorian part. The proof is based on the decomposition of ux(t)u_x(t) into waves belonging to the characteristic families u(t)=i=1Nvi(t)r~i(t),vi(t)M(R), r~i(t)RN, u(t) = \sum_{i=1}^N v_i(t) \tilde r_i(t), \quad v_i(t) \in \mathcal M(\R), \ \tilde r_i(t) \in \mathrm R^N, and the balance of the continuous/jump part of the measures viv_i in regions bounded by characteristics. To this aim, a new interaction measure \mu_{i,\jump} is introduced, controlling the creation of atoms in the measure vi(t)v_i(t). The main argument of the proof is that for all tt where the Cantorian part of viv_i is not 0, either the Glimm functional has a downward jump, or there is a cancellation of waves or the measure μi,jump\mu_{i,\mathrm{jump}} is positive
    corecore