7 research outputs found

    Amplified Cold Transduction in Native Nociceptors by M-Channel Inhibition

    Get PDF
    Topically applied camphor elicits a sensation of cool, but nothing is known about how it affects cold temperature sensing. We found that camphor sensitizes a subpopulation of menthol-sensitive native cutaneous nociceptors in the mouse to cold, but desensitizes and partially blocks heterologously expressed TRPM8(transient receptor potential cation channel subfamily M member 8). In contrast, camphor reduces potassium outward currents in cultured sensory neurons and, in cold nociceptors, the cold-sensitizing effects of camphor and menthol are additive. Using a membrane potential dye-based screening assay and heterologously expressed potassium channels, we found that the effects of camphor are mediated by inhibition of K(v)7.2/3 channels subtypes that generate the M-current in neurons. In line with this finding, the specific M-current blocker XE991 reproduced the cold-sensitizing effect of camphor in nociceptors. However, the M-channel blocking effects of XE991 and camphor are not sufficient to initiate cold transduction but require a cold-activated inward current generated by TRPM8. The cold-sensitizing effects of XE991 and camphor are largest in high-threshold cold nociceptors. Low-threshold corneal cold thermoreceptors that express high levels of TRPM8 and lack potassium channels are not affected by camphor. We also found that menthol-like camphor-potently inhibits K(v)7.2/3 channels. The apparent functional synergism arising from TRPM8 activation and M-current block can improve the effectiveness of topical coolants and cooling lotions, and may also enhance TRPM8-mediated analgesia

    A Decision Tree Approach for the Musical Genres Classification

    No full text
    The interest in the music classification has increased due to its wide applicability and discoveries obtained from researches. However, efficient methods for systemic organization of digital libraries are required, since users need to classify the available music files. When an automatic classification is desired, the extraction of input attributes and an efficient system, able to process them, are needed. In this context, the use of decision trees as a tool to predict musical genres classes allows the monitoring of the ramification, since nodes and branches of the tree can be accessed in this process. Decision tree is a technique very useful in data mining to extract information of a data set, normally using a TDIDT (Top-Down Induction Decision Tree) algorithm. Therefore, the goal of this paper is to propose an automatic classification method for Latin musical genres, by applying decision tree approach. The real database used is named Latin Music Database [20]. Two algorithms are executed: CART (Classification and Regression Tree) [2] and C4.5 [18], which have constructive criteria distinguished. The obtained results are compared and discussed in order to evaluate the classification performance

    Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia

    No full text
    Crotalphine is a structural analogue to a novel analgesic peptide that was first identified in the crude venom from the South American rattlesnake Crotalus durissus terrificus. Although crotalphine's analgesic effect is well established, its direct mechanism of action remains unresolved. The aim of the present study was to investigate the effect of crotalphine on ion channels in peripheral pain pathways. We found that picomolar concentrations of crotalphine selectively activate heterologously expressed and native TRPA1 ion channels. TRPA1 activation by crotalphine required intact N-terminal cysteine residues and was followed by strong and long-lasting desensitization of the channel. Homologous desensitization of recombinant TRPA1 and heterologous desensitization in cultured dorsal root ganglia neurons was observed. Likewise, crotalphine acted on peptidergic TRPA1-expressing nerve endings ex vivo as demonstrated by suppression of calcitonin gene-related peptide release from the trachea and in vivo by inhibition of chemically induced and inflammatory hypersensitivity in mice. The crotalphine-mediated desensitizing effect was abolished by the TRPA1 blocker HC030031 and absent in TRPA1-deficient mice. Taken together, these results suggest that crotalphine is the first peptide to mediate antinociception selectively and at subnanomolar concentrations by targeting TRPA1 ion channels

    The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients

    No full text
    The chronic pain syndrome inherited erythromelalgia (IEM) is attributed to mutations in the voltage-gated sodium channel (NaV) 1.7. Still, recent studies targeting NaV1.7 in clinical trials have provided conflicting results. Here, we differentiated induced pluripotent stem cells from IEM patients with the NaV1.7/I848T mutation into sensory nociceptors. Action potentials in these IEM nociceptors displayed a decreased firing threshold, an enhanced upstroke, and afterhyperpolarization, all of which may explain the increased pain experienced by patients. Subsequently, we investigated the voltage dependence of the tetrodotoxin-sensitive NaV activation in these human sensory neurons using a specific prepulse voltage protocol. The IEM mutation induced a hyperpolarizing shift of NaV activation, which leads to activation of NaV1.7 at more negative potentials. Our results indicate that NaV1.7 is not active during subthreshold depolarizations, but that its activity defines the action potential threshold and contributes significantly to the action potential upstroke. Thus, our model system with induced pluripotent stem cell–derived sensory neurons provides a new rationale for NaV1.7 function and promises to be valuable as a translational tool to profile and develop more efficacious clinical analgesics
    corecore